

The ProTego Integration Toolkit – A Kubernetes

Journey

Whitepaper

Noel Thomas and Arturo Arriaga, ICE

 © 2021 ICE and other members of the ProTego consortium 2

INTRODUCTION
Containers have quickly become the standard for application deployment. Containers are units of

software that package up code and all dependencies so that an application is able to run quickly

and reliably in various computing environments, from OnPremise to OnCloud deployments.

With containers comes the need for managing them, and to this end Kubernetes has emerged as

the leading container orchestration software. Kubernetes is a portable, extensible, open-source

platform for managing containerized workloads. It facilitates declarative configuration and

automation, takes care of scaling and failing over applications, provides deployment patterns, and

more.

In addition, current development trends rely strongly on microservice architectures and cloud

deployments. Dev teams must use microservices - mainly using containers - to architect for

portability, whilst Ops teams must manage large hybrid and multi-cloud deployments. Kubernetes

plays a key role in supporting these microservice/cloud native architecture trends.

We have developed the ProTego Integration Toolkit in order to support the Kubernetes journey.

This toolkit consists of a bundle of several open-source technologies based on the Kubernetes

ecosystem to integrate and manage the ProTego components. In addition, a user-friendly installer

has been developed, which automates the installation of this Integration Toolkit.

INTEGRATION TOOLKIT
The Integration Toolkit is based mainly on Kubernetes and Docker technologies and provides the

key infrastructure for deployment and integration of applications. It also includes several other

Kubernetes related tools, deployed along with the toolkit for ease of management, like Rancher,

Helm, etc. The core components of the Integration Toolkit infrastructure are as follows.

• Kubernetes: leading technology in container orchestration, that manages the deployment
and integration of containers. It is used as the base platform where applications are deployed.

• Docker: leading container technology. Containers allow for applications to be run
independent of the operating system environment. It allows for separate environments for
each application.

• Rancher: software that allows to deploy and manage Kubernetes clusters in a more user-
friendly way both on premise and on cloud. Applications, i.e., ProTego Toolkit components,
are deployed via Rancher/Helm charts to the Kubernetes clusters.

• RKE (Rancher): RKE is a CNCF-certified Kubernetes distribution that runs entirely within
Docker containers. It solves the common frustration of installation complexity with
Kubernetes by removing most host dependencies and presenting a stable path for
deployment, upgrades, and rollbacks.

• K3s (Rancher): the lightweight Kubernetes, is a fully compliant Kubernetes distribution, easy
to install, half the memory, all in a binary of less than 100 MB among other enhancements.

• Helm: the package manager for Kubernetes, applications are packaged in the form of Helm
charts and deployed as a unit. By using Kubernetes yaml templates, allows multiple
containers to be grouped together as well as describing the properties needed to deploy an
application.

• Istio: service mesh technology that allows to add transparently a layer to provide the platform
with enhanced connectivity, security, control and observability. It uses a sidecar container
deployed along the application container to provide the service mesh features.

• Ansible: software for IT automation and provisioning, used to deploy the ProTego platform
and its components.

 © 2021 ICE and other members of the ProTego consortium 3

• Longhorn: highly available persistent storage for Kubernetes, which uses the local
filesystem of the nodes and provides replication and backups. It is deployed on a Kubernetes
cluster as a regular application using a Helm chart.

• NFS: Network File System server which can be deployed along with the Toolkit in order to
provide shared storage for applications.

• GitLab: a platform for software development and version control based on Git, used as
Container Registry and Helm Chart catalog.

• Jenkins: an automation software to build, test and deploy applications, it is the key CI/CD
tool for the toolkit to automatically deploy applications and provide new versions.

All these provide the base platform for the deployment and integration of the ProTego Toolkit

components in an automated and repeatable way.

INTEGRATION TOOLKIT ARCHITECTURE
The Integration Toolkit is composed of two different Kubernetes clusters.

• The K3s Cluster (Rancher cluster): a single node Kubernetes cluster where Rancher is
deployed.

• The RKE Cluster (Application cluster): the cluster where the ProTego components are
deployed. This cluster has a master and several worker nodes.

Figure 1 shows the basic Integration Toolkit Kubernetes Architecture, with a Rancher cluster in

order to manage the Application cluster and the applications, and the Application cluster, with a

master node where the Kubernetes control plane runs, and some worker nodes where applications

are deployed.

Figure 1 Integration Toolkit Architecture

 © 2021 ICE and other members of the ProTego consortium 4

INSTALLATION OVERVIEW
In order to install the Integration Toolkit, several Ansible playbooks are provided that allow for an

automatic or semi-automatic deployment of the Toolkit.

Ansible is an IT automation engine that allows for automated provisioning and configuration

management and other IT tasks. It uses no agents so it is easy to deploy, and uses playbooks

expressed in yaml which allows the automation tasks to be described in a declarative way.

Ansible works by connecting to the nodes, where the Toolkit is going to be installed, and running

small programs called “Ansible modules” as per Ansible playbook definitions. Ansible modules

execute tasks. One or more tasks can be combined to make a play. Two or more plays can be

combined to create a playbook. Ansible playbooks are lists of tasks that automatically execute

against specific hosts. Groups of hosts form the Ansible inventory.

Ansible uses a single node, where it is installed. It uses ssh authorized keys to connect to the

nodes where the playbooks will be run. The Ansible node can be any machine, even a user laptop,

provided ssh keys are established.

The basic steps for Integration Toolkit deployment, using the Ansible playbooks, are as follows.

• Check/Install pre-requirements (Ansible).

• Install Kubernetes Application Cluster [RKE].

• Install Kubernetes Rancher Cluster [K3s].

• Deploy Rancher to the Rancher Cluster.

• Register the Application Cluster in Rancher.

• Deploy Istio.

• Install NFS for shared storage (optional).

• Deploy Longhorn for HA storage (optional).

• Deploy the CI/CD Pipeline (optional).

KUBERNETES 101
Kubernetes is the leading technology in container orchestration. There are several distributions

that can be used to install a Kubernetes cluster. The RKE distribution from Rancher has been

selected for the Integration Toolkit and for the Application Cluster. RKE is a production-grade

Kubernetes distribution which reduces installation complexity by removing most host dependencies

and presents a stable path for deployment, upgrades and rollbacks given that it runs entirely within

Docker container.

A Kubernetes cluster consists of the components which represent the control plane and a set of

machines called worker nodes which run containerized applications. Every cluster has at least one

worker node. The worker node(s) host the applications (in the form of Pods) and the control plan

manages the worker nodes and Pods in the cluster.

Kubernetes uses Kubernetes objects, a set of persistent entities in the Kubernetes system, to

represent the state of the cluster. Specifically, they can describe:

• what containerized applications are running,

• the resources available to those applications, and

• the policies around how those applications behave, i.e. restart, upgrades …

A Kubernetes object is a “record of intent,” and once created Kubernetes will constantly work to

ensure that object exists, i.e. this is your cluster’s desired state.

 © 2021 ICE and other members of the ProTego consortium 5

To work with Kubernetes objects, the Kubernetes API is used, via kubectl from the command-line

interface or directly in custom programs using a client library. When an object is created, the object

spec and some basic information has to be provided. Most often, all this information is provided in

a .yaml file describing the object.

The key Kubernetes object or resources related to containerized applications is a Pod. A Pod is the

smallest deployable unit of computing that can be created in Kubernetes. A Pod is a group of one

or more containers with shared storage and network resources, and a specification for how to run

the containers.

Some other key resources grouped by functionality are as follows.

Workloads
A workload is an application running on Kubernetes. Whether this workload is a single component

or several that work together, on Kubernetes they run inside a set of Pods. Then, instead of

managing each Pod directly, workload resources can be used to manage a set of pods on the

user’s behalf. Workloads configure controllers that make sure that the right number of the right kind

of pods are running, to match the state specified. Some of the main workload resources are as

follows.

• ReplicaSet: maintain a stable set of replica Pods running at any given time.

• Deployment: provides declarative updates for Pods and ReplicaSets.

• StatefulSet: similar to a Deployment but for stateful applications keeping a persistent

identifier for each Pod that is maintained across any rescheduling.

• DaemonSet: ensures that all (or some) Nodes run a copy of a Pod.

• Others like Job, CronJob …

Networking

Containers withing a Pod use networking to communicate via loopback. Cluster networking

provides communication between different Pods.

Services are an abstract way to expose an application running on a set of Pods as a network

service. Kubernetes gives Pods their own IP addresses and a single DNS name for a set of Pods,

and can load-balance across them. The main service types are as follows.

• ClusterIP: exposes the service on a cluster internal ip, being reachable from within the

cluster.

• NodePort: exposes the service on each Node’s IP at a static port being reachable from

outside the cluster via NodeIP:NodePort.

Ingress manages external access to the services in a cluster, typically HTTP, providing load

balancing, SSL termination and name-based virtual hosting. An ingress controller, such as ingress-

nginx, must be deployed to satisfy an Ingress resource but there are a number of other ingress

controllers with multiple features.

Storage

On-disk files in a container are ephemeral, which presents some problems for non-trivial

applications when running in containers. One problem is the loss of files when a container crashes.

The kubelet restarts the container but with a clean state. A second problem occurs when sharing

files between containers running together in a Pod.

• PersistentVolumes: a piece of storage in the cluster that has been provisioned by an

administrator or dynamically provisioned using Storage Classes.

• PersistentVolumeClaim: a request for storage by a user, PVCs consume PV resources.

 © 2021 ICE and other members of the ProTego consortium 6

Configuration

ConfigMap is used to store non-confidential data in key-value pairs. Pods can consume

ConfigMaps as environment variables or configuration files in a volume.

Secrets store and manage sensitive information, such as passwords, ssh keys, etc.

There are many other resources that can be used. For a detailed description of them, see the

official Kubernetes documentation at https://kubernetes.io/.

HELM AND RANCHER CHARTS
Helm is the package manager for Kubernetes. Helm helps to manage Kubernetes applications

using Helm charts. Helm charts help to define, install and upgrade Kubernetes application. Charts

describe even the most complex apps, provide repeatability, and serve as single point of authority.

In addition, charts are easy to version, share and host on public or private servers.

A Helm chart is a collection of files that describe a related set of Kubernetes resources. A single

chart might be used to deploy a simple app such as a single nginx pod or a more complex app

such as a full web app stack with HTTP servers, databases, frontend, backend, and so on.

Charts are created as files in a particular directory tree and can be packaged into versioned

archives to be deployed. The directory name is the name of the chart, without the versioning

information.

A sample Helm chart structure for an app:

app/

 Chart.yaml: a yaml file containing information about the chart

 README.md (optional): a human-readable readme file

 values.yaml: the default configuration values for this chart

 charts/ : directory containing any charts upon which this chart depends

 templates/ : directory of templates, that is the templates of the

 Kubernetes resource files that, combined with values,

 generate valid Kubernetes manifest files

A Helm chart uses the files in the templates/ directory as templates of Kubernetes resources for

the application. Then the values file is used to render valid Kubernetes resources from the

templates during deployment time.

If using Rancher, Rancher charts - which are a superset of Helm charts – can be used to deploy

applications to the Kubernetes cluster using Rancher.

Rancher charts are very similar to Helm charts, differing only in the directory structure, which

includes an app version directory charts/app/version/ … and two additional files, as follows.

• app-readme.md: a text-based file which provides a high-level overview display in the

Rancher UI.

• questions.yaml: matches any values.yaml variable that needs or requires to be displayed in

the Rancher UI during deployment, so that a user can set specific values for specific

variables during deployment time from the Rancher UI.

Helm or Rancher charts in Rancher are deployed using Catalogs. A Catalog is a Git or Helm

repository filled with Helm Charts ready to be deployed.

https://kubernetes.io/

 © 2021 ICE and other members of the ProTego consortium 7

CONCLUSIONS
Current development trends rely strongly on microservices and cloud native architecture, and

Kubernetes plays a key role for development and deployment. The ProTego Integration Toolkit

supports end users with this transition to Kubernetes.

In this document, a brief overview of the Integration Toolkit has been presented, along with a

description of its main components and architecture, a Kubernetes 101 summary, a description of

Helm charts and how to use them, and an overview of the installation steps.

