
ProTego-ACC: Access control and key management
for healthcare systems

Seyed Farhad Aghili, Dave Singelée
seyedfarhad.aghili@esat.kuleuven.be, dave.singelee@esat.kuleuven.be
imec-COSIC, KU Leuven, Belgium

December 15, 2021

P
reserving the confidentiality of sensi-
tive Electronic Health Records (EHRs),
stored on a medical server, is an essen-

tial issue in healthcare systems. The system
should have the means to avoid unauthorized
users from accessing this sensitive informa-
tion. This security problem has been tackled
in the ProTego project, where an access con-
trol mechanism is developed as an integral
part of a toolkit for data protection in health-
care. Without the appropriate access control
mechanisms, it is impossible to protect the
EHRs. This white paper discusses multiple
technical approaches to provide access control
and key management for healthcare systems.

1 Problem Statement and
Background

Hospitals and medical care centers have to process
and store sensitive medical data. This data is often
stored in a Electronic Health Record (EHR). To en-
sure interoperability, one often stores medical data
in a specific format: FHIR (Fast Healthcare Interop-
erability Resources). One of the research goals of the
ProTego project was to design and develop a toolkit
to protect and provide secure access to this data.
One of the components in this toolkit is the access
control and key management service (ProTego-ACC).
In this section, first, we explain the security problem
and then provide the necessary background on access
control.

1.1 Problem Statement

The main application of the access control and key
management service is to enhance the security of the
Data Gateway (DGW). This component is the main

interface for a user (denoted as data producer or data
consumer) to read or write data from the system.
Moreover, to protect the medical data, the DGW is
also responsible for the secure storage of the data
(i.e., store the data in encrypted format). The DGW
first encrypts medical data that it receives from a
data producer and only then stores it in external
storage, for example a cloud system. When a data
consumer wants to retrieve data from the DGW,
the DGW will decrypt it before passing it to the
data consumer. From a security point of view, the
following three requirements should be fulfilled:

• Users should be able to only retrieve the plain-
text data they are authorized for to receive (i.e.
according to security policies defined in the sys-
tem).

• All encryption/decryption keys need to be stored
securely. So, an adversary that compromises the
DGW would still not be able to decrypt all
the encrypted data that is stored in the cloud
storage.

• In scenarios where we assume the adversary can
also compromise the ProTego-ACC component,
(s)he should not be able to decrypt the EHR
data. Same scenario when the DGW and access
control component collude.

The main goal of the ProTego-ACC component is
to realize the first two security requirements above.
Moreover, we also investigated how the third re-
quirement can be fulfilled as well. However, since
mitigating the scenario where the DGW and ProTego-
ACC increases the complexity of the access control
solution, we first focus on the two first security re-
quirements solely and only afterwards discuss access
control solutions to tackle the third requirement as
well.



ProTego-ACC Access control and key management for healthcare systems

1.2 Background

Traditionally, hospitals use either local servers or
cloud systems to store EHRs data. Using some pre-
defined access control rules, medical staff (employees
in the hospital) can access this information. This
access control model is static (defined once – used
many times) in which a user with a specific role in
the hospital is allowed to access part of the infor-
mation. Such an access control mechanism typically
uses a Role-Based Access Control (RBAC) model
[1]. In the general RBAC model, the roles are as-
signed to the users and the permissions are assigned
to the roles. Some constraints and role hierarchies
are defined in other RBAC models such as RBAC1,
RBAC2, and RBAC3. For example, the user can be
a human and the role is a job function or job title like
“doctor”. The permission is an approval of access to
one or more objects in the system (this can be the
patient’s EHRs). The authorized user that holds this
permission is then allowed to perform some action(s)
such as ”read” or ”write” on the object in the system.
RBAC1 model is based on role hierarchies, including
senior and junior roles such as doctor and nurse roles
in hospital. For example, in this model, a doctor
who is senior to a nurse inherits all permissions from
the nurse. The doctor role in this model can also
have extra permissions in addition to those inherited
from the nurse. In RBAC2, the same user is not
permitted to have two roles to avoid fraud attacks.
Finally, RBAC3 is a combination of RBAC1 and
RBAC2.
In the RBAC model, it is possible to have some dy-
namic rules that can be injected to the model at the
decision point. However, these rules can be changed
only by the administrator of the system, and it is
not possible for the data owner to define his own
rules(e.g., a user with role X can also access the cur-
rent data).
ABAC Model:
Using smart devices introduces several new security
and privacy challenges that RBAC cannot tackle
in healthcare systems such as a “mobile user com-
promised“ attack. Fortunately, the Attribute-Based
Access Control (ABAC) model can be an alternative
solution for RBAC. In ABAC, the user can only ac-
cess the data if (s)he has all the attributes the data
is associated with. In fact, in the ABAC model, the
user that can satisfy some attributes such as “time,”
“location,” “user identity,” and “user role” can ac-
cess the information. In the ABAC model, the data
owner may define rules for his/her data consumers.

Due to the sensitivity of the healthcare records

that are outsourced to the cloud, this information
should remain confidential (i.e., information should
be encrypted). So, only an authorized user can de-
crypt the data and access the information.
ABE as a Solution:
Integrating techniques such as Attribute-Based En-
cryption (ABE) [2] into ABAC makes it possible
to encrypt the outsourced medical information and
protect it from the cloud system. Even if a malicious
insider gets access to the cloud system, (s)he would
not retrieve the plaintext data. In ABE-based ABAC
model, a data owner encrypts plaintext data using
some attributes. In such a system, the decryption of
encrypted data is possible only if the set of attributes
of the data user’s key matches the attributes of the
encrypted data.

1.3 Outline

In Section 2, first, we explain the basic ProTego-
ACC solution for managing and protecting access
to confidential data. This basic solution is based on
RBAC with static rules. Next, in Section 3, we fur-
ther enhance the basic ProTego-ACC solution, and
propose two additional schemes that offer protection
against colluding DGW and access control compo-
nents. These two extensions are briefly compared in
Section 4.

2 High-level overview of
ProTego-ACC

ProTego-ACC consists of several components that
jointly realize this access control functionality. More-
over, these components interact with several other
components in the ProTego toolkit, in particular
with the DGW and an external Identity and Access
Management (IAM) component. The latter is needed
to know which user is requesting to upload or retrieve
data from the DGW (through the application that
connects to the DGW). A high-level view on the
access control and key management architecture has
been depicted in Fig.1

2.1 ProTego-ACC framework

Below, we first briefly discuss the basic ProTego-
ACC framework. In the rest of this section, we then
discuss the limitations of this basic solution. In the
next section, we discuss our improvements to this
solution.

2 Page 2 of 11



ProTego-ACC Access control and key management for healthcare systems

 

Figure 1: High level view of the Access Control and Key Management architecture

2.2 Functionality of the ProTego-ACC
scheme

The ProTego-ACC framework is responsible for the
authorization and Key Management Service (KMS)
to enhance the DGW security. The main purpose of
ProTego-ACC framework is to decide whether a data
consumer is allowed to retrieve the plaintext data or
not (authorization service). Let’s look at how a data
producer/consumer can upload/access (resp. read)
the medical data.

As shown in Fig. 2, once the data producer wants
to send the data to the DGW, it first authenticates
itself to the external IAM component and obtains an
authorization token (the IAM is responsible for man-
aging the attributes of all system users and generat-
ing the authorization token based on these attributes
and the expiration time). The data producer then
sends the token to the DGW and all the medical data
it wants to upload. The DGW now encrypts this data
and sends the key encryption key (KEK) to the ac-
cess control component. The KEK is then forwarded
via the access control interface sub-component of
ProTego-ACC to a key management service (KMS)
where all the keys will be securely stored. Within
the ProTego project, we have opted to use the open-
source Vault [3] key management service (KMS). The
KMS will use an internal key which is the master
encryption key (MEK) to encrypt the KEK and the
data producer’s parameters (i.e. the content of the
authorization token). This encrypted data is called a
wrapped KEK. This wrapped KEK is then sent back
to the DGW for storage along with the encrypted
medical data.

As depicted in Fig. 2, when a data consumer
wants to access the encrypted medical data, it first
authenticates itself to the external IAM and obtains
an authorization token. Then, it sends the authoriza-
tion token to the DGW. The DGW relays this token
to the ProTego-ACC component. It is important to
note that the DGW, in addition to the authorization
token, also sends the master key identity and the
wrapped KEK associated with the medical data that
the data consumer wants to retrieve to the ProTego-
ACC component. At this point, the access control
component checks the validity of the token (i.e., be-
ing a legitimate token that is not yet expired) and
for which the medical data access is requested. Next,
the control interface sub-component of ProTego-ACC
forwards the outcome of this evaluation (token valid
or not) to the Policy Decision Point (PDP) sub-
component. The Policy Decision Point will need
additional information (i.e. the data producer’s pa-
rameters associated with the KEK) to make a proper
security decision (i.e. to grant access or not). This
input is processed in two stages. First, the Con-
trol Interface sub-component relays the wrapped
KEK and the master key identity to the KMS to
fetch the unwrapped KEK and the corresponding
data producer’s parameters (i.e. the owner’s identity,
the owner’s role and the group to which the owner
belongs). Second, the access control interface sub-
component forwards these parameters to the Policy
Decision Point. Based on all this information and
applicable security policies, the Policy Decision Point
will now be able to decide if access should be granted
to the data consumer. This decision is based on
pre-defined security policies that are stored in the

3 Page 3 of 11



ProTego-ACC Access control and key management for healthcare systems

 

AC

Policy 
decision point

Vault

Access 
Control 

Interface

policy

Data Gateway

External IAM
Data consumer 

/ producer

Token

KEK Parameters

Token

Parameters

Access/Denied

Token

Token

KEK 

ACC 

Figure 2: ProTego-ACC architecture

Policy Decision Point sub-component.

2.3 Limitations of the ProTego-ACC
scheme

Although the basic ProTego-ACC framework pro-
vides the necessary security functionality, it also has
some limitations. First of all, as mentioned above,
the current authorization service is based on static se-
curity policies. Since the access policy is stored in the
Policy Decision Point and also constant parameters
are statically linked to the KEK, the policies cannot
be automatically changed when the system evolves.
This means that the current version of the access
control framework (basic ProTego-ACC) does not
meet the requirements for dynamic security policies
(e.g. when the administrator of the system wants
to change the policies). Therefore, we propose a
new representation of a policy, called dynamic policy
access control, which could be generated and bound
dynamically to the wrapped KEK.

Moreover, if an adversary would compromise both
the DGW and ProTego-ACC components, then it
would be able to decrypt all the encrypted data. To
improve upon this, the encryption/decryption keys
need to be constructed based on not only secret pa-
rameters stored in the ProTego-ACC component but
also secret parameters (e.g. secret key) from a non-
colluding third party (for example the data producer
itself). To this aim, we proposed an enhanced ac-
cess control solution that relies on Ciphertext-policy
attribute-based encryption (CP-ABE). In CP-ABE
based scheme, the medical data first gets protected
based on security policies defined by the data pro-

ducer. Afterwards, the medical data gets an addi-
tional round of protection, based on the system’s
security policies. We also propose an alternative
solution, the Cryptographic attribute-based access
control (C-ABAC) scheme, that can provide user re-
vocation functionality. An important property of the
proposed revocation mechanism, as will be discussed
later, is that all the non-revoked data consumers’
secret keys will not need to be updated when a re-
vocation event occurs. It is worth noting that in
conventional revocation mechanisms for Attribute-
Based Encryption, all encrypted data needs to be
re-encrypted to prevent a revoked user from using
its secret key for decryption. Thus, all other non-
revoked data consumers will have to receive updated
secret keys, which is not efficient at all, particularly
in the context of a large-scale hospital ecosystem.

In the next section, we describe all our proposed
improvements and novel access control solutions in
detail.

3 Enhancements of the
ProTego-ACC Scheme

This section presents an overview of our three pro-
posed improvements: i) Dynamic policy attribute-
based access control (D-ABAC) protocol, ii)
Ciphertext-policy attribute-based access control (CP-
ABAC) scheme and iii) Cryptographic attribute-
based access control (C-ABAC) scheme. The D-
ABAC protocol replaces our basic ProTego-ACC
solution explained before. The D-ABAC scheme can
then be further extended with either the CP-ABAC

4 Page 4 of 11



ProTego-ACC Access control and key management for healthcare systems

protocol or the C-ABAC protocol.

3.1 Dynamic policy attribute-based access
control (D-ABAC) protocol

To propose a new representation of a security policy,
called dynamic policy access control, we enhanced
our access control architecture by relying on the
Open Policy Agent (OPA) [4] framework. OPA is an
open-source engine that unifies policy enforcement
across the stack. OPA provides a high-level declar-
ative language (Rego) that lets us specify policy
as code and simple APIs to offload policy decision-
making from our access control component. When
our component needs to make policy decisions it
queries OPA and the supplies structured data (e.g.,
JSON) as input. Then OPA outputs policy decisions
by evaluating the query input against the security
policies and data. The policies that the admin of
the system defines can be inspected and transformed
using Rego. It is important to note that policies from
several existing policy systems can be implemented
with the OPA framework using the Rego language.
Fig.3 shows an example of an Attribute-based access
control (ABAC) realisation. With attribute-based
access control, one makes policy decisions using the
attributes of the users (e.g. a user being a doctor)
involved in the access control request. In this exam-
ple, ”user attributes” is an attribute set of the user.
We could also have some dynamic attributes such
as “tenure” (e.g., doctor joined the hospital more
than 10 years ago) for the users. According to the
policies defined in this example, the OPA will return
“true” in the cases where i) the data consumer has
the role of doctor, ii) the data consumer is the data
producer, or iii) their identity was assigned to the
KEK at the time of wrapping. In the latter case, the
data producer must send these assigned identities
(the ‘input’ shown in Fig. 2) to the access control
component through the DGW.

High-level overview of the D-ABAC archi-
tecture: First of all, it is important to stress that
our proposed D-ABAC solution replaces our initial
basic access control framework. In the D-ABAC
scheme, we rely on a new sub-component, denoted as
the ABAC Policy Decision Point, to realize dynamic
ABAC. As depicted in Fig. 4, the ABAC Policy Deci-
sion Point sub-components include the Token-based
Policy Agent (TPA) and Open Policy Agent (OPA).
It also supports updating the security policies.

Token-based Policy Agent (TPA): The TPA
is based on a simple access control rule that was
already defined in the Policy Decision Point sub-

 

Figure 3: Rego example for ABAC

component of the basic access control framework.
This simple access control rule states that the user
that creates the data (i.e. data producer) always
can access their own data (it means that the TPA
evaluates the identity of the data consumer and will
grant access to this user if the data consumer is the
data producer). By using this simple access control
rule, already many access control requests (i.e. the
data producer’s requests to access their produced
data) can be handled. Therefore, TPA is a fast
decision point that improves the efficiency of the
overall access control system.

Open Policy Agent (OPA): In the cases that
the requester (data consumer) is not the data pro-
ducer, the ABAC Policy Decision Point sends the
request (Query) to the OPA engine using specific
Command Line Interfaces (CLIs). The Query which
is the file with the JSON format includes the Token
parameters, data producer’s parameters, and data
producer’s input (note that parameters and input of
the data producer are fetched from Vault, similarly
as in the basic ProTego-ACC framework). OPA gen-
erates policy decisions by evaluating the query input
and security policies stored in policy files.

Updating the security policies: When OPA

5 Page 5 of 11



ProTego-ACC Access control and key management for healthcare systems

 

D-ABAC

ABAC Policy decision 
point

OPA

Access 
Control 

Interface

policy+input

policy

policy

TPA

Data Gateway

External IAM
Data consumer 

/ producer

KEK Parameters

Vault

d

A/D

d = Parameters + Token + input
A/D = Access/Denied

Token

Token

Token

Input (only data producer)

Input

Figure 4: Dynamic ABAC Protocol to access medical data

 

Figure 5: Example of input data (JSON format)

starts for the first time, it will not have any secu-
rity policies. Policies can be added, removed, and
modified at any time. Since OPA accepts external
data, the system will support dynamic policy access
control. This dynamic property is based on external
input and policy files.

Input file: Often policies require external data
that is not available to the OPA. The query can
include external data (necessitating of course that the
policy is written accordingly). The Policy Decision
Point acts as below:

• It sends a query to OPA including the external
input data (Fig. 5 shows an example of the
input data) and token parameters.

• OPA makes a decision based on the query and
the external policy file.

Policy file: The policy file is expressed in
the Rego language (see Fig. 3). This file is

under the control of the security administrator
of the system. The administrator can add or
remove one or more policies inside this file at
any time. The OPA will make its access control
decision based on this file and the access control
query. Fig. 6 demonstrates an example of a query
including the name of external policy and input files.

 

Figure 6: Example of a query to OPA

3.2 Ciphertext-policy attribute-based
access control (CP-ABAC) scheme

3.2.1 Description of the protocol

Since both DGW and access control components are
executed and managed in the same cloud environ-
ment, and therefore most likely managed by the same
entity, an adversary who compromises this cloud envi-
ronment would be able to obtain all necessary secret
keys to decrypt all the encrypted medical data that
is stored externally.

To mitigate this problem, one should only be able
to retrieve the encryption/decryption keys by us-
ing secrets from the access control component and
secrets from another external entity that does not
collude with the DGW or access control framework.

6 Page 6 of 11



ProTego-ACC Access control and key management for healthcare systems

For the latter, we will rely on the data producer
itself. In summary, one can only retrieve the neces-
sary keys to encrypt/decrypt the medical data when
both the DGW/access control framework and the
data producer contribute. None of these parties in
isolation is able to get the encryption/decryption
keys. To this end, we propose an enhanced access
control scheme called CP-ABE. In CP-ABE, a cipher-
text is encrypted with access policies over attributes
called access structure. Any data consumer whose
attributes satisfy the access policy can decrypt the
ciphertext; otherwise, the decryption fails. Associ-
ating the access policy with the ciphertext means
that the ciphertext chooses which key can recover
the plaintext, giving the data producer more control
of its outsourced data [5].
Generally speaking, three entities are responsible

for running the CP-ABE scheme: (i) attribute au-
thority, (ii) data producer, and (iii) data consumer.
The role of the attribute authority is to generate sys-
tem public and master secret keys and issue attribute
secret keys to each data consumer based on their cor-
responding attribute list. A data producer chooses
an access policy themselves and integrates that into
the ciphertext. Then, the data consumer has the
means for decrypting the ciphertext to retrieve the
original data based on their attribute secret keys.

It is important to stress that the CP-ABE protocol
is a security enhancement of ProTego access control
framework. Therefore, it can be combined with either
the basic ProTego-ACC solution discussed before
in this white paper, or the D-ABAC solution (see
Section 3.1). In the ProTego project, we have opted
for the latter, as this provides the most functionality.

In our enhanced scheme, the medical data first gets
encrypted based on security policies defined by the
data producer. After this encryption, the result is
then forwarded to the DGW. The rest of the process
is similar as in the D-ABAC solution described in
Section 3.1. When requesting access to the data, the
DGW will now send an encrypted medical file to
the data consumer (assuming that the access control
framework granted access). The data consumer can
then decrypt this data and retrieve the plaintext
medical data when it has all the necessary attributes,
as was defined by the security policies of the data
producer. Note: In the enhanced scheme there are
two types of polices; i) policies defined by the data
producer, and ii) policies defined by the organization
(e.g., hospital). The data consumer can access to the
data iff they can satisfy both of these policies. Let
us now look more into detail in this scheme.
High-level overview of the CP-ABAC ar-

chitecture: As demonstrated in Fig. 7, our pro-
posed CP-ABAC relies on attribute-based encryp-
tion (ABE) [2]. Integrating ABAC into the ABE
technique provides us a possibility to encrypt the
outsourced information (e.g. FHIR data) and pro-
tect it from attacks when both the DGW and access
control framework are compromised. Using ABE,
even if an adversary compromises both DGW and
access control components, they would not be able
to read the sensitive information. The algorithms
and steps of the proposed CP-ABAC scheme are as
follows.
CP-ABAC Algorithms: The scheme consists

of six algorithms: Setup, AES-Enc, CP-ABE-Enc,
ABE-KeyGen, CP-ABE-Dec, and AES-Dec.

Setup Algorithm: This algorithm generates a pair
of public parameters (pp) and a master secret key
based on the system security parameter and an at-
tribute space. The IAM runs this algorithm, stores
the master secret key, and publishes pp. Note: In
the CP-ABAC scheme, one attribute authority ad-
ministrates all system attributes. This authority
has the master secret key that is used to derive all
users’ decryption secret keys. When CP-ABAC is
combined with D-ABAC, the IAM plays the role of
the attribute authority.
AES-Enc Algorithm: This algorithm picks a ran-

dom key KAES . It then uses this key and the AES
encryption algorithm to encrypt the FHIR data. The
output of this algorithm is the ciphertext CTAES .
The data producer runs this algorithm.

CP-ABE-Enc Algorithm: This algorithm is the en-
cryption algorithm that takes as input the public
parameters, KAES as a message, and an access struc-
ture A over the universe of attributes (i.e. a security
policy based on the attributes). The algorithm will
encrypt KAES and produce a ciphertext CTABE such
that only a data consumer that possesses a set of at-
tributes that satisfies the access structure will be able
to decrypt the message (and hence retrieve KAES).
We will assume that the ciphertext implicitly con-
tains A. The data producer also runs this algorithm.
Note that we use CP-ABE-Enc algorithm to encrypt
the encryption key rather than the FHIR data, for
efficiency reasons. Note: access structure A will be
defined by the data producer.
ABE-KeyGen Algorithm: The key generation al-

gorithm takes as input the master secret key and a
set of user attributes DCAtt that describe the key. It
outputs the data consumer’s private key KABE . The
IAM runs this algorithm for each data consumer.
CP-ABE-Dec Algorithm: The decryption algo-

rithm takes as input the public parameters pp, a

7 Page 7 of 11



ProTego-ACC Access control and key management for healthcare systems

ciphertext CTABE , which contains an access struc-
ture A, and a data consumer private key KABE ,
which is a private key for the attribute set DCAtt. If
the set DCAtt of attributes satisfies the access struc-
ture A, then the algorithm will decrypt the ciphertext
and return KAES as an output message. Using this
output (i.e. this key), the data consumer can then
decrypt the encrypted FHIR data (see algorithm
below). The data consumer runs this algorithm.

AES-Dec Algorithm: This algorithm takes the key
KAES and the ciphertext CTAES as input. It then
uses this key and the AES decryption algorithm to
decrypt the CTAES . The output of this algorithm is
the FHIR data. The data consumer also runs this
algorithm.

Different steps within CP-ABAC: The steps
of our proposed CP-ABAC scheme are described as
follows. Note that steps 1 and 4 are only used for
initialization, steps 2 and 3 for data storage (by the
data producer), and steps 5 and 6 for data retrieval
(by the data consumer).

Step 1 The IAM takes the security parameter and
the attribute space and runs the Setup algorithm.
The Setup algorithm returns the master secret key
and public parameters pp of the system. At this point,
IAM stores the master secret key and publishes the
public parameters pp.

Step 2 Once the data producer generates the FHIR
data, it picks the random key KAES . And runs the
AES-Enc algorithm to encrypt the FHIR data. The
output of this algorithm is the ciphertext CTAES .

Step 3 At this point, the data producer defines
the access structure A over the universe of attributes
and runs the CP-ABE-Enc algorithm to encrypt
the key KAES . The output of this algorithm is the
ciphertext CTABE . After running this algorithm, the
data producer determines the access rights to the
encrypted message in access sets and grants access
to the ciphertext only to a specific group of data
consumers. Finally, data producer uploads the tuple
(CTAES , CTABE) to the DGW. From this stage
onwards, the rest of the encryption and access control
works exactly as before (see D-ABAC solution).

Step 4 During initialization, each data consumer
needs to get the secret key corresponding to its at-
tributes. Therefore, it will query the IAM. The IAM
then runs the ABE-KeyGen algorithm and produces
the secret decryption key KABE under the attribute
set of the data consumer DCAtt. Finally, the IAM
sends the secret decryption key KABE to the data
consumer. It is worth mentioning that this step of
the scheme can be performed offline and once.

Step 5 When the data consumer with a valid at-

tribute set wants to access the FHIR data, it will
communicate to the DGW and the access control
framework, similarly as in the D-ABAC solution.
When access was granted, the DGW will provide
the data consumer with the tuple (CTAES , CTABE).
Using its secret key KABE , the data consumer per-
forms the CP-ABE-Dec algorithm on CTABE . If the
collection of data consumer attributes satisfies the ac-
cess structure A associated with the ciphertext, then
the algorithm outputs a decrypted message KAES ,
else, decryption fails.

Step 6 The final decryption algorithm (AES-Dec)
uses the key KAES , retrieved in step 5, to securely
decrypt FHIR data. This step is also performed by
the data consumer.

3.2.2 Key Revocation in CP-ABAC

Since the data producer encrypts the data based on
a chosen access structure and does not obtain the
data consumer’s certificate online, the data producer
is not able to check whether the data consumer is
revoked. The most popular solution to handle re-
vocation in ABE-based access control systems is to
re-encrypt the data each time there is a new ac-
cess structure or to update the key. However, this
type of method has several shortcomings. Several
different data consumers might match the decryp-
tion policy. Updating the key might therefore force
the IAM to maintain a large amount of private key
storage, i.e. a key for every time period. Therefore,
to provide the revocation functionality, we propose
another attribute-based scheme called cryptographic
attribute-based access control (C-ABAC), which we
will discuss below.

3.3 Cryptographic attribute-based access
control (C-ABAC) scheme

3.3.1 Description of the protocol

In this section, we propose an alternative solution
for the CP-ABAC scheme described above. As men-
tioned, CP-ABE schemes have the limitation that
they only have limited support for dynamic key re-
vocation. Therefore, to provide key revocation, we
propose a novel scheme denoted as cryptographic
attribute-based access control (C-ABAC). In this
scheme, we rely on the IAM to decrypt the encryp-
tion key that was chosen by the data producer. Note
that similarly to the CP-ABAC solution, also the
C-ABAC scheme is a security extension of the cur-
rent access control framework (so either the basic
ProTego-ACC framework or the D-ABAC solution).

8 Page 8 of 11



ProTego-ACC Access control and key management for healthcare systems

 
CP-ABE Enc.

Policy

pp

FHIR

AES Enc.

K_AES

CT_AES

CT_ABE

K_AES

DP

DC_Attpp

FHIR

AES Dec.

K_AES

CT_AES

CT_ABE
DC

CP-ABE Dec.

ABE_KeyGen

K_ABE

DC_Att

C_AES
C_ABE

DGW

IAM

Figure 7: Ciphertext-policy ABAC scheme to access medical data

In the ProTego project, we opted to combine C-
ABAC with D-ABAC.

High-level overview of the C-ABAC archi-
tecture: As shown in Fig. 8, our proposed C-ABAC
scheme relies on encrypting the KAES using the pub-
lic key pk of the IAM. Thus, the decryption of the
KAES is now carried out in the IAM. The algorithms
and steps of the proposed CP-ABAC scheme are as
follows.

C-ABAC Algorithms: The scheme consists of
six algorithms: Setup, AES-Enc, Public-key-Enc,
IAM-PDP, Public-key-Dec, and AES-Dec.

Setup Algorithm: This algorithm generates the
pair of a public key (pk) and a secret key based
on the system security parameter. The IAM runs
this algorithm, stores the secret key, and publishes
pk.

AES-Enc Algorithm: This algorithm picks the ran-
dom key KAES . It then uses this key and the AES
encryption algorithm to encrypt the FHIR data. The
output of this algorithm is the ciphertext CTAES .
The data producer runs this algorithm.

Public-key-Enc Algorithm: This algorithm is the
asymmetric encryption algorithm that takes as input
the IAM public key pk, KAES as the input mes-
sage, and an access structure A over the universe
of attributes (i.e. the security policy). The algo-
rithm will encrypt KAES and produce a ciphertext
CTpk = Epk(KAES , A). The data producer also
runs this algorithm. Note: access structure A will
be defined by the data producer.

Public-key-Dec Algorithm: The Public-key-Dec al-
gorithm takes as input the master secret key and

a message CTpk = Epk(KAES , A). It decrypts the
message and obtains the tuple (KAES , A). Then
it forwards the tuple to the IAM Policy Decision
Point (IAM-PDP) algorithm. The IAM runs this
algorithm.

IAM-PDP Algorithm: The IAM-PDP algorithm
takes as input the tuple (KAES , A) and outputs the
private key KAES to the data consumer iff the data
consumer’s attributes satisfy the access structure A.
If these security policies are met,KAES is given to the
data consumer. The IAM also runs this algorithm.

AES-Dec Algorithm: This algorithm takes the key
KAES and the ciphertext CTAES as input. It then
uses this key and the AES decryption algorithm to
decrypt the CTAES . The output of this algorithm
is the FHIR data. The data consumer runs this
algorithm.

Different steps within C-ABAC: The steps
of our proposed C-ABAC scheme are described as
follows. Note that step 1 is only used for initialization
steps 2 and 3 for data storage (by the data producer),
and steps 4 to 6 for data retrieval (by the data
consumer).

Step 1 The IAM takes the security parameter and
runs the Setup algorithm. The Setup algorithm
returns the secret key and public key pk of the IAM.
At this point, IAM stores the secret key and publishes
the public key pk.

Step 2 Once the data producer generates the FHIR
data, it selects a random key KAES . and runs the
AES-Enc algorithm to encrypt the FHIR data us-
ing this key. The output of this algorithm is the
ciphertext CTAES .

9 Page 9 of 11



ProTego-ACC Access control and key management for healthcare systems

 
Public-key 

Enc.

pk

FHIR

AES Enc.
CT_AES

CT_pk

K_AES

DP

FHIR

AES Dec.
CT_AES

CT_pk
DC

IAM_PDP
K_AES

CT_AES
CT_pk

DGW

K_AES

IAM

CT_pk

CT_pk

K_AES Policy

Policy

Public-key 
Dec.

sk

IAM

DC_Att

Figure 8: Cryptographic ABAC scheme to access medical data

Step 3 At the time of sending data to the DGW,
the data producer defines the access structure A
over the universe of attributes and runs the Public-
key-Enc algorithm to encrypt both KAES and A
as CTpk = Epk(KAES , A). Finally,data producer
uploads the tuple (CTAES , CTpk) to the DGW.
From this stage onwards, the rest of the data storage
process is similar as in the D-ABAC solution.

Step 4 When the data consumer wants to access
the FHIR data, it first communicates to the DGW
and access control framework, similarly as in the D-
ABAC solution. If access is granted, the DGW will
send the tuple (CTAES , CTpk) to the data consumer.
After receiving this tuple, the data consumer sends
the ciphertext CTpk to the IAM for decryption.

Step 5 Upon receiving the request, the IAM runs
the Public-key-Dec algorithm to decrypt the message
CTpk = Epk(KAES , A) using the IAM secret key.
Then it forwards the tuple (KAES ,A) to its internal
IAM Policy Decision Point (IAM-PDP) algorithm.
At this point, the IAM-PDP algorithm outputs the
private key KAES to the data consumer iff the data
consumer’s attributes satisfy the access structure A.
Then, KAES is given to the data consumer.

Step 6 The data consumer uses the decryption
algorithm AES-Dec, using the key KAES , to securely
decrypt the FHIR data.

3.3.2 Key Revocation in C-ABAC

The IAM runs the IAM-PDP algorithm for each
transaction. Since the IAM-PDP algorithm checks
at runtime the dynamic access structure A and val-
idates the data consumer’s credentials online, the
IAM will automatically detect when a data consumer

is revoked, and will not provide a revoked data con-
sumer the encryption key KAES . In other words, the
IAM performs an online revocation check on behalf
of the data producer.

4 Conclusion

This white paper proposes four technical solutions to
provide access control and key management scheme
for healthcare systems used in the ProTego toolkit.
The first scheme is the basic ProTego-ACC based on
the traditional RBAC model. Although this model
efficiently protects unauthorized users from accessing
EHR data, the access control component decides
based on some pre-defined static rules and is not
robust against compromised attack. Three Enhanced
ProTego-ACC schemes (i.e., D-ABAC, CP-ABAC
and C-ABAC) are described in this white paper
to mitigate these issues. D-ABAC is still based
on RBAC but makes use of dynamic access control
rules. The D-ABAC scheme can then be further
extended with either the CP-ABAC scheme or the
C-ABAC scheme. Both schemes are based on ABAC
model and robust against an attack where the DGW
and access control component would collude or be
compromised. The strong points and shortcomings
of both schemes are summarized in Table 1.

Acknowledgements

This work was financed in part by the European
Union’s Horizon 2020 Research and innovation pro-
gram, under grant agreement No. 826284 (ProTego).

10 Page 10 of 11



ProTego-ACC Access control and key management for healthcare systems

Table 1: CP-ABAC extension vs. C-ABAC extension

Scheme Strong points Shortcomings

CP-ABAC

• no need for extra computation on the
IAM side (the IAM only runs the
Setup phase that can be offline and
once).

• no need to add extra flow to the cur-
rent scheme.

• does not support key revocation.

• computational costs compared to C-
ABAC on both data producer and
data consumer sides (1 AES and 1
ABE encryption/decryption on both
data producer data consumer sides).

C-ABAC

• efficient key revocation.

• low computation costs on both data
producer and data consumer sides (1
AES and 1 public-key encryption on
the data producer side and only 1
AES decryption on the data consumer
side).

• needs extra computations in the IAM-
side (i.e., the IAM runs the Public-
key-Dec and IAM-PDP algorithms).

• needs an extra flow between data con-
sumer and IAM (higher communica-
tion cost compared to CP-ABAC).

References

[1] R. S. Sandhu, Role-based access control, in: Ad-
vances in computers, Vol. 46, Elsevier, 1998, pp.
237–286.

[2] A. Sahai, B. Waters, Fuzzy identity-based en-
cryption, in: Annual International Conference on
the Theory and Applications of Cryptographic
Techniques, Springer, 2005, pp. 457–473.

[3] Vault: open-source key management service,
https://www.vaultproject.io/.

[4] OPA: Open Policy Agent, https://www.

openpolicyagent.org/.

[5] J. Bethencourt, et al., Ciphertext-policy
attribute-based encryption, in: 2007 IEEE sym-
posium on security and privacy (SP’07), IEEE,
2007, pp. 321–334.

11 Page 11 of 11

https://www.vaultproject.io/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/

	Problem Statement and Background
	Problem Statement
	Background
	Outline

	High-level overview of ProTego-ACC
	ProTego-ACC framework
	Functionality of the ProTego-ACC scheme
	Limitations of the ProTego-ACC scheme

	Enhancements of the ProTego-ACC Scheme
	Dynamic policy attribute-based access control (D-ABAC) protocol
	Ciphertext-policy attribute-based access control (CP-ABAC) scheme
	Description of the protocol
	Key Revocation in CP-ABAC

	Cryptographic attribute-based access control (C-ABAC) scheme
	Description of the protocol
	Key Revocation in C-ABAC


	Conclusion

