

H2020-SU-TDS-02-2018
Trusted digital solutions and Cybersecurity in Health and Care

DATA-PROTECTION TOOLKIT REDUCING RISKS IN HOSPITALS AND
CARE CENTERS

Project Nº 826284

ProTego

D6.3 Final prototype: Architecture, requirements, and
integrated toolkit

 Responsible: ICE

 Contributors: Inetum, IT Innovation, IMEC, IBM, KU Leuven, UAH

 Document Reference: D6.3

 Dissemination Level: Public

 Version: v1

 Date: 31/07/2021

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 2

Executive Summary

This document describes the platform architecture, component resources and the requirements
as well as the integration work and the Integration Toolkit. ProTego is an integrated toolkit which
consists of six tools: System Security Modeller, Security Information and Event Management,
Continuous Authentication, Data Gateway, Access Control Framework, and Network Slicing.
These tools are integrated together using the Integration Toolkit which allows for an updatable,
continuously integrated platform to be deployed in each hospital. These are mostly deployed as
Docker containers on a ProTego platform but certain aspects will be deployed on mobile devices,
or on public or private clouds. The Platform Architecture in two levels is first described. Then, a
detailed description of the Integration Toolkit is presented, which is the main focus of WP6 work.
The Requirements include several points and how they relate to the project. Integration
requirements and resource estimates are also provided for all components. We discuss the
interoperability including the ProTego components, the Integration Toolkit and the status of the
WP4 and WP5 final integration. Finally, we describe how recommendations from the previous
WP6 deliverable D6.2 have been addressed and set out some conclusions.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 3

Contributors Table

DOCUMENT SECTION AUTHOR(S) REVIEWER(S)

I Introduction Philip Usher, Noel Tomas (ICE) Antonio Jesús Gamito
González, Luis
Carrascal (Inetum),
Colin Upstill (ICE)

II Platform
Architecture

Philip Usher, Noel Tomas, Arturo
Jimenez Arriaga (ICE)

Antonio Jesús Gamito
González, Fernando
Rendon, Luis Carrascal
(Inetum) , Colin Upstill
(ICE)

III Integration Toolkit Noel Tomas, Arturo Jimenez Arriaga
(ICE)

Antonio Jesús Gamito
González, Fernando
Rendon, Luis Carrascal
(Inetum), Colin Upstill
(ICE)

IV Component
Resources

Luis Carrascal (Inetum)

Eliot Salant (IBM)

Philip Usher, Arturo Jimenez Arriaga,
Noel Tomas (ICE)

Kostas Kouvaris (IT Innovation)

Esteban Municio (IMEC)

Farhad Aghili, Dave Singelee (KU
Leuven)

Cilleruelo Rodríguez Carlos (UAH)

Antonio Jesús Gamito
González, Fernando
Rendon (Inetum), Colin
Upstill (ICE)

V Requirements Luis Carrascal (Inetum)

Eliot Salant (IBM)

Philip Usher, Arturo Jimenez Arriaga,
Noel Tomas (ICE)

Kostas Kouvaris (IT Innovation)

Esteban Municio (IMEC)

Farhad Aghili, Dave Singelee (KU
Leuven)

Cilleruelo Rodríguez Carlos (UAH)

Antonio Jesús Gamito
González, Fernando
Rendon (Inetum), Colin
Upstill (ICE)

VI Interoperability Philip Usher, Noel Tomas (ICE)

Kostas Kouvaris (IT Innovation)
Eliot Salant (IBM)

Antonio Jesús Gamito
González, Fernando
Rendon, Luis Carrascal
(Inetum), Colin Upstill
(ICE)

VII Recommendations
from D6.2

Noel Tomas (ICE) Antonio Jesús Gamito
González, Fernando
Rendon, Luis Carrascal
(Inetum), Colin Upstill
(ICE)

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 4

VIII Conclusions Philip Usher (ICE)

Noel Tomas (ICE)

Antonio Jesús Gamito
González, Fernando
Rendon, Luis Carrascal
(Inetum), Colin Upstill
(ICE)

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 5

Table of Contents

 INTRODUCTION .. 10

 PLATFORM ARCHITECTURE .. 11

II.1. OVERVIEW ARCHITECTURE ... 11
II.2. SYSTEM ARCHITECTURE ... 12

 INTEGRATION TOOLKIT ... 14

III.1. INTEGRATION TOOLKIT KUBERNETES ARCHITECTURE ... 14
III.2. DEPLOYMENT OVERVIEW .. 15

III.2.1. Ansible Playbooks .. 15
III.2.2. Kubernetes Application Cluster ... 18
III.2.3. Kubernetes Rancher Cluster .. 20
III.2.4. Rancher ... 21
III.2.5. Istio .. 24

III.3. PROTEGO COMPONENTS .. 27
III.3.1. Kubernetes Resources ... 27
III.3.2. Helm and Rancher Charts .. 29

III.4. PLATFORM DEPLOYMENTS... 35
III.5. INTEGRATION STEPS ... 36
III.6. CONTINUOUS INTEGRATION / CONTINUOUS DEPLOYMENT (CI/CD) .. 37
III.7. STORAGE ... 40
III.8. NEXT STEPS .. 42

III.8.1. Installation Steps ... 42
III.8.2. Kubernetes Native Storage.. 42
III.8.3. Cloud / Terraform .. 43
III.8.4. Other Kubernetes DevOps Utilities .. 43

 COMPONENT RESOURCES .. 44

IV.1.1. TEMPLATE: WP: Component Name (ACRONYM- Partner) .. 44
IV.2. WP4: CYBERSECURITY RISK ASSESSMENT TOOLS .. 44

IV.2.1. WP4: System Security Modeller (SSM – IT Innovation) ... 45
IV.2.2. WP4: Security Information and Event Management (SIEM – Inetum).. 46

IV.3. WP5: CYBERSECURITY RISK MITIGATION TOOLS ... 47
IV.3.1. WP5: Continuous Authentication (CA - UAH) .. 47
IV.3.1. WP5: Data Gateway (DG - IBM) .. 48
IV.3.2. WP5: Access Control Framework (ACF – KU Leuven) .. 49
IV.3.3. WP5: Network Slicing (NS - IMEC) ... 51

 REQUIREMENTS ... 53

V.1. INITIAL REQUIREMENTS ... 53
V.2. INTEGRATION REQUIREMENTS .. 54

V.2.1. WP4: System Security Modeller ... 54
V.2.2. WP4: Security Information and Event Management ... 54
V.2.3. WP5: Continuous Authentication ... 54
V.2.4. WP5: Data Gateway .. 55
V.2.5. WP5: Access Control Framework ... 55
V.2.6. WP5: Network Slicing ... 55
V.2.7. WP6: Integration Toolkit .. 56

V.3. RESOURCE USAGE .. 56
V.3.1. WP4: System Security Modeller ... 56
V.3.2. WP4: Security Information and Event Management ... 57
V.3.3. WP5: Continuous Authentication ... 59
V.3.4. WP5: Data Gateway .. 59
V.3.5. WP5: Access Control Framework ... 60
V.3.6. WP5: Network Slicing ... 60
V.3.7. WP6: Integration Toolkit .. 60

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 6

 INTEROPERABILITY ... 62

VI.1. INTERCONNECTIONS ... 62
VI.1.1. Risk Assessment integration ... 62
VI.1.2. Risk Mitigation Integration - Data Gateway ... 64

VI.2. DEPENDENCIES ... 65
VI.3. INTERFACES .. 66

 RECOMMENDATIONS FROM D6.2 FOR FINAL PROTOTYPE .. 67

VII.1. USE-CASES ... 67
VII.2. ITERATIVE WORKFLOW .. 67

 CONCLUSIONS .. 68

Table of Figures

Figure II-1: The high-level overview of the ProTego Intermediate Prototype11
Figure II-2: This figure shows the current sub-components of the intermediate prototype and how
they are arranged within the integration toolkit. ...12
Figure III-1: Integration Toolkit Kubernetes Architecture..15
Figure III-2 RKE Cluster Nodes displayed with Kubectl ...20
Figure III-3 K3s Cluster Nodes displayed with Kubectl ..21
Figure III-4 Rancher UI with list of registered clusters ...23
Figure III-5 List of ProTego components deployed in the cluster with updates available24
Figure III-6 Rancher ProTego catalog with list of ProTego components34
Figure III-7 Rancher UI view for component deployment setting the questions.yaml variables ..35
Figure III-8 ProTego CI/CD Pipeline ..38
Figure III-9 Jenkins Pipeline Status View ..38
Figure III-10 Jenkins Pipeline Approve Step ..38
Figure III-11 NFS Volume ...41
Figure IV-1: Key for Component Diagram ...44
Figure IV-2: High level architecture of the System Security Modeller tool.45
Figure IV-3 High Level Architecture of the SIEM ...47
Figure IV-4: High level architecture of the Continuous Authentication Component.48
Figure IV-5: Component Level Diagram ..49
Figure IV-6: Subcomponents of the ACF and their high-level interfaces.51
Figure IV-7: The component level diagram for the Network Slicing Component52
Figure VI-1 Information flow diagram of the integrated SSM-SIEM system.63
Figure VI-2 SIEM to SSM communication ...64
Figure VI-3 SSM to SIEM communication. ..64

List of Tables

Table III-1: Stages of Integration ...36
Table III-2: Integration Steps for the Final Prototype ...36
Table III-3 List of Variables used at Jenkins version.properties file ...39
Table V-1: Summary of Initial Requirements from D6.1 and D6.2 ...53
Table V-2: Integration Requirements from the SSM ..54
Table V-3: Integration Requirements from the SIEM ...54
Table V-4: Integration Requirements from Continuous Authentication54

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 7

Table V-5: Integration Requirements from Data Gateway ...55
Table V-6: Integration Requirements from Access Control Framework55
Table V-7: Integration Requirements from Network Slicing ...55
Table V-8: Integration Requirements from the Integration Toolkit ..56
Table V-9: Computing Resource Estimates for SSM ...56
Table V-10: Computing Resource Estimates for SSM-Adaptor ...57
Table V-11: Computing Resource Estimates for SIEM ..57
Table V-12: Computing Resource Estimates for ElasticSearch coordinating node57
Table V-13: Computing Resource Estimates for ElasticSearch master node57
Table V-14: Computing Resource Estimates for ElasticSearch data node58
Table V-15: Computing Resource Estimates for Logstash ..58
Table V-16 Computing Resource Estimates for Kibana ..58
Table V-17: Computing Resource Estimates for Wazuh Manager ...58
Table V-18: Computing Resource Estimates for Kafka..59
Table V-19: Computing Resource Estimates for OpenVAS Stack ...59
Table V-20: Computing Resource Estimates for Continuous Authentication59
Table V-21: Computing Resource Estimates for Data Gateway ..59
Table V-22: Computing Resource Estimates for Access Control Framework60
Table V-23: Computing Resource Estimates for Network Slicing ..60
Table V-24: Computing Resource Estimates for K3S Cluster ..60
Table V-25: Computing Resource Estimates for RKE Cluster Master Node60
Table V-26: Computing Resource Estimates for RKE Cluster Worker Node60
Table V-27: Computing Resource Estimates for NFS Node ..61
Table V-28: Computing Resource Estimates for Jenkins Master Node61
Table V-29: Computing Resource Estimates for Jenkins Worker Node61
Table VI-1: Dependencies for ProTego ...65
Table VI-2: Interfaces for ProTego ..66

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 8

Table of Acronyms and Definitions

Acronym Definition

AC Access Control

ACF Access Control Framework

API
Application Programming
Interface

AWS Amazon Web Services

CA Continuous Authentication

CI/CD
Continuous Integration /
Continuos Delivery or
Deployment

CNCF
Cloud Native Computing
Foundation

DG Data Gateway

DNS Domain Name System

EC2 Elastic Compute Cloud

EDR
Endpoint Detection
Response

EKS Elastic Kubernetes Service

FHIR
Fast Healthcare
Interoperability Resources

HTTP Hypertext Transfer Protocol

IAAS Infrastructure As A Service

IAM
Identify Access
Management

IP Internet Protocol

IT Integration Toolkit

JWT JSON Web Token

K3s
Rancher lightweight
Kubernetes

KEK Key Encryption Keys

KMS Key Management Service

MB Message Bus

NS Network Slicing

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 9

PAAS Platform As A Service

RBAC Role Based Access Control

REST
Representational State
Transfer

RKE Rancher Kubernetes Engine

SAAS Software As A Service

SIEM
Security Information and
Event Management

SQL Structured Query Language

SSH Secure Shell

SSM System Security Modeller

TBD To Be Determined

UI User Interface

VA Vulnerability Assessment

YAML
YAML Ain’t Markup
Language

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 10

 INTRODUCTION
ProTego is a toolkit and guidelines to address issues around sensitive personal data in health
care services. Health care services provide a rich target for malicious actors and the sensitivity
and privacy cost of this type of sensitive and personal data is paramount. As well as malicious
intent accidental or poor judgement in the design of the system can leave data open. ProTego
aims for a toolkit and guidelines that help to manage these risks.

ProTego focuses around risk assessment and risk mitigation. Risk assessment tools, System
Security Modeller, and Security Information and Event Management system will model and
measure risk of the deployed application to show the risk and mitigations actions as well as
allowing updates to the risk model based on data. The risk mitigation includes the component of
Data Gateway, Access Control Framework, Continuous Authentication and Network Slicing.
These tools look at securing the data at rest and in motion. Finally, there is an Integration Toolkit
which focuses on bringing together these tools into an integrated platform for testing with the use-
cases.

This document is mainly an update from previous deliverable D6.2. with the following key
differences:

• Figures in Section II Platform Architecture have been updated to reflect the latest status.

o SSM deployed inside the cluster.

o On-Premise/On-Cloud share the same Architecture as per the case studies
deployments.

• New Section III has been added with a detailed description of the Integration Toolkit,
which is the main focus of WP6 work.

• Sections IV and V have been updated to reflect latest status of WP4 and WP5.

• New section on Continuous Integration is now included in Section III and previous CI/CD
section has been removed.

• The recommendations section is now changed to describe how these recommendations
from previous deliverable have been addressed.

• Conclusions have been updated.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 11

 PLATFORM ARCHITECTURE
The architecture is described in terms of both a high-level view at the component level and a
lower level view containing sub-components. The architecture diagrams show the nature of the
calls be they using a Rest API, a publish/subscribe message bus or a direct call between
subcomponents. The architecture shows the ProTego deployment which is the same for on-
premise and on-cloud deployments the only difference being where the Integration Toolkit is
installed. In some on-cloud deployments, managed Kubernetes could be used. All ProTego
components are deployed in the ProTego Kubernetes cluster. The applications that integrate with
ProTego, i.e., Foodcoach and PocketEHR, are deployed outside the ProTego Kubernetes cluster.

II.1. Overview Architecture

Figure II-1: The high-level overview of the ProTego Intermediate Prototype

The ProTego Final prototype (Figure II-1) consists of six main components from WP4 and WP5
integrated together using the Integration Toolkit from WP6. The Network Slicing adds a layer of
complexity as it integrates at a lower level and thus provides its functionality to the connections
between the components.

The Final prototype Architecture includes the plans for the Use-Cases and with implementations
on-premise and on-cloud.

The ProTego components are as follows:

1. WP4: System Security modeller (SSM)

2. WP4: Security Information and Event Management (SIEM)

3. WP5: Continuous Authentication (CA)

4. WP5: Data Gateway (DG)

5. WP5: Access Control Framework (ACF)

6. WP5: Network Slicing (NS)

7. WP6: Integration Toolkit (IT)

II.2. System Architecture

Figure II-2: This figure shows the current sub-components of the intermediate prototype and how they are arranged within the integration toolkit.

This systems level architecture (Figure II-2) shows the component broken down into their sub-
component parts, and shows the nature of their connection regarding some of the key types of
information transmitted through the system.

Key types of information:

• Network Manipulation: Specifically, for the network slicing. Requires control of specific
hardware deployed in the hospital infrastructure. These control lines allow the
manipulation of the network traffic directly.

• Health Data: Represents backend health data as treated by the ProTego components,
particularly the secure transfer and data access from Parquet files, Parquet being the file
format of choice for the DG.

• Pocket EHR: This represents the flow of data from the Pocket EHR use-case front-end to
the back-end and then to the Data Gateway for secure storage and/or retrieval.

• FoodCoach: This represents the flow of data from the FoodCoach use-case front-end to
the back-end and then to the Data Gateway for secure storage and/or retrieval.

• Authentication/Authorisation: Represents how user will be authorised through the
system.

• Security Logging/Monitoring: Is the mechanism for monitoring, logging, and sending
alerts to be analysed by SIEM.

The Platform is brought together with the Integration toolkit (WP6) which provides a packaging,
provisioning and orchestration toolkit. More details can be found in Section III.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 14

 INTEGRATION TOOLKIT
The Integration Toolkit is the key infrastructure to allow deployment and integration of the ProTego
components. It is based mainly on Kubernetes and Docker technologies and provides the platform
on which components are deployed and integrated. It supports the definition and use of standards
for deploying and integrating components. It also provides a CI/CD pipeline supporting continuous
integration/deployment of updated versions of ProTego components in a central environment,
and also the publishing of these updated versions for the use-case deployments.

This Integration Toolkit was introduced in deliverables D6.1 and D6.2, but a more detailed
description is provided in this deliverable, which also documents the most recent updates to the
platform and describes all the work done in WP6 in this regard.

The core components of the Integration Toolkit infrastructure are:

• Kubernetes: leading technology in container orchestration, that manages the deployment
and integration of containers. It is used as the base platform where ProTego components
are deployed.

• Docker: leading container technology. Containers allow for applications to be run
independent of the operating system environment. It allows for separate environments for
each application. ProTego Toolkit components are built as Docker containers.

• Rancher: software that allows to deploy and manage Kubernetes clusters in a more user-
friendly way both on premise and on cloud. Applications, i.e., ProTego Toolkit
components, are deployed via Rancher/Helm charts to the Kubernetes clusters.

• Helm: the package manager for Kubernetes, applications are packaged in the form of
Helm charts and deployed as a unit. By using Kubernetes yaml templates, allows multiple
containers to be grouped together as well as describing the properties needed to deploy
an application.

• Istio: service mesh technology that allows to add transparently a layer to provide the
platform with enhanced connectivity, security, control and observability. It uses a sidecar
container deployed along the application container to provide the service mesh features.

• Ansible: software for IT automation and provisioning, used to deploy the ProTego
platform and its components.

• GitLab: a platform for software development and version control based on Git, used as
Container Registry and Helm Chart catalog in ProTego.

• Jenkins: an automation software to build, test and deploy applications, it’s the key CI/CD
tool in ProTego to automatically deploy the components and provide new versions.

All these provide the base platform for the deployment and integration of the ProTego Toolkit
components in an automated and repeatable way.

III.1. Integration Toolkit Kubernetes Architecture

The Integration Toolkit is composed of two different Kubernetes clusters:

• The Rancher cluster: single node Kubernetes cluster where Rancher is deployed.

• The Application cluster: the cluster where the ProTego components are deployed. This
cluster has a master and several worker nodes.

Figure III-1 shows the basic Integration Toolkit Kubernetes Architecture, with a Rancher cluster
in order to manage the Application cluster and the ProTego components. Then the Application
cluster, with a master node where the Kubernetes control plane runs, and some worker nodes
where the ProTego components are deployed.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 15

Figure III-1: Integration Toolkit Kubernetes Architecture

III.2. Deployment Overview

In order to start using ProTego, the Integration Toolkit needs to be installed. For this installation
procedure, WP6 provides several Ansible playbooks that allow for an automatic or semi-automatic
deployment of the Toolkit. Detailed instructions on how to do this are also provided for the case
studies. The basic steps for Integration Toolkit deployment, using the Ansible playbooks, are:

• Check/Install pre-requirements (Ansible).

• Install Kubernetes Application Cluster [RKE].

• Install Kubernetes Rancher Cluster [K3s].

• Deploy Rancher to the Rancher Cluster.

• Register the Application Cluster in Rancher.

• Deploy Istio.

• Deploy the ProTego Toolkit components.

• Deploy the CI/CD Pipeline.

In the next sections there is a brief description of each of these installation steps related to the
key technologies being used and how they are being used in ProTego.

III.2.1. Ansible Playbooks

Several ansible playbooks have been developed and provided to deploy the Integration Toolkit in
any environment.

These playbooks are used to perform all the Integration Toolkit installation steps automatically or
semi-automatically.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 16

Ansible is an IT automation engine that allows for automated provisioning and configuration
management and other IT tasks. It uses no agents so it is easy to deploy, and uses playbooks
expressed in yaml which allows the automation tasks to be described in a declarative way.

Ansible works by connecting to the nodes, where the ProTego platform is going to be installed,
and running small programs called “Ansible modules” as per Ansible playbook definitions. Ansible
modules execute tasks. One or more tasks can be combined to make a play. Two or more plays
can be combined to create a playbook. Ansible playbooks are lists of tasks that automatically
execute against specific hosts. Groups of hosts form the Ansible inventory.

Ansible uses a single node, where it is installed. It uses ssh authorized keys to connect to the
nodes where the playbooks will be run. The Ansible node can be any machine, even a user laptop,
provided ssh keys are established.

Ansible uses a hosts configuration file describing how nodes are configured in groups to perform
specific tasks, e.g., a user may configure a group of Kubernetes Application Cluster nodes and
perform only certain tasks on such a node group. This is an example of the hosts configuration
file for the Integration Toolkit installation:

[ansible]

ansible.protego

[rke]

master.protego

worker01.protego

worker02.protego

[rkemaster]

master.protego

[k3smaster]

rancher.protego

[rancher]

rancher.protego

[docker]

master.protego

worker01.protego

worker02.protego

rancher.protego

In the above example, several groups of hosts have been configured: rke, rkemaster, etc. Then
these group labels are used in the playbooks to specify which tasks are run on which groups of
hosts. This file would be configured according to the target ip addresses or the hostnames of the
nodes of the on-premise/on-cloud deployment where the Integration Toolkit is going to be
installed.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 17

This is a sample of the Ansible playbook that performs the necessary initial steps to install the
Integration Toolkit :

- hosts: all

 remote_user: root

 tasks:

Create rancher group

 - name: create rancher group

 group:

 name: rancher

Create rancher user

 - name: create rancher user

 user:

 name: rancher

 password: ""

 shell: /bin/bash

 home: /home/rancher

 group: rancher

 groups: sudo

 append: yes

 generate_ssh_key: yes

Copy all ssh rancher public keys

 - name: fetch all id_rsa public

 fetch:

 src: /home/rancher/.ssh/id_rsa.pub

 dest: id_rsa.pub.{{ inventory_hostname }}

 flat: yes

Copy the installation scripts

 - name: copy the installation scripts

 copy:

 src: /root/rancher_install

 dest: /home/rancher/

 owner: rancher

 group: rancher

 mode: '0644'

Add the ssh keys to the authorized hosts

 - name: add ssh keys to the authorized hosts

 shell: cat /home/rancher/rancher_install/id_rsa.pub.{{

item }} >> /home/rancher/.ssh/authorized_keys

 args:

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 18

 executable: /bin/bash

 loop: "{{ query('inventory_hostnames','all') }}"

Copy rancher sudoers file

 - name: copy rancher sudoers file

 copy:

 src: /home/rancher/rancher_install/rancher

 dest: /etc/sudoers.d/

 mode: '0440'

 remote_src: yes

…

In order to run the Ansible playbook, a user needs to install Ansible. An installation script has
been provided by WP6 in order to perform the Ansible installation in one node. In order to run a
playbook, user needs to run the command:

ansible-playbook playbook-name.yaml -i hosts

where playbook-name.yaml is the playbook file name and hosts is the inventory file.

WP6 provides a set of Ansible playbooks for the case studies and possible future customers in
order to install and deploy the Integration Toolkit. The list of provided Ansible playbooks is:

• install-user.yaml | install-user_root.yaml: this playbook creates the rancher user for the
installation and distributes the ssh keys

• install-docker.yaml: this playbook creates the basics for the platform. Performs some pre-
reqs and installs Docker.

• install-rke.yaml: this playbook prepares the nodes with the prerequisites and installs the
Kubernetes cluster (RKE). In addition, the playbook installs and configures kubectl, a
software tool for Kubernetes command line management, and Helm.

• install-certmanagerk8s.yaml: this playbook deploys Certmanager in the Kubernetes
cluster. Certmanager is a requirement for Rancher and is a software tool used to issue ssl
certificates.

• install-rancherk8s.yaml: this playbook deploys Rancher in the Kubernetes cluster.

• install-k3s.yaml: this playbook deploys a K3s cluster.

Some additional scripts are provided that are run from the Ansible playbooks. In addition, detailed
instructions on how to run those playbooks are also provided.

III.2.2. Kubernetes Application Cluster

The Kubernetes Application Cluster is the Kubernetes Cluster where the other ProTego
components will be deployed.

As already mentioned, Kubernetes is the leading technology in container orchestration. There are
several distributions that can be used to install a Kubernetes cluster. In this case, for the
Integration Toolkit at ProTego, and for the Application Cluster, the RKE distribution from Rancher
has been selected.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 19

RKE is a CNCF-certified Kubernetes distribution that runs entirely within Docker containers. That
is, all the Kubernetes components, including the control plane components, which are the key
ones making global decisions about the cluster, run as Docker containers. RKE is a production-
grade Kubernetes distribution that removes installation complexity with Kubernetes by removing
most host dependencies and presenting a stable path for deployment, upgrades and rollbacks.
With RKE, the operation of Kubernetes is easily automated and entirely independent of the
operating system and platform. If you can run Docker, you can deploy and run Kubernetes with
RKE, building a cluster from a single command in minutes. In addition, its declarative configuration
makes Kubernetes upgrades atomic and safe.

This is an extract of the Ansible playbook used to deploy the RKE cluster:

- hosts: rke

 remote_user: rancher

 become: yes

 become_user: root

 become_method: sudo

 tasks:

Prepare the nodes for rke installation

 - name: prepare node

 script: /home/rancher/rancher_install/prepare_node.sh

 args:

 creates: /home/rancher/rancher_install/prepare_node.lock

 when:

 - ansible_facts['distribution'] == "Ubuntu"

- hosts: rkemaster

 remote_user: rancher

 tasks:

Copy the cluster config file to the master node

 - name: copy cluster config file to master node

 copy:

 src: /home/rancher/rancher_install/cluster.yml

 dest: /home/rancher/rancher_install/cluster.yml

 mode: '0644'

Install rke: the cluster.yaml

 - name: chmod +x rke file

 file:

 path: /home/rancher/rancher_install/rke

 mode: '0755'

 tags:

 - rke

 - name: install rke - run rke

 shell: |

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 20

 ./rke up

 echo "rke" > rke.lock

 args:

 executable: /bin/bash

 chdir: /home/rancher/rancher_install/

 creates: /home/rancher/rancher_install/rke.lock

 register: result

 - name: debug rke

 debug:

 var: result

 - name: create .kube directory for k8s

 file:

 path: /home/rancher/.kube

 state: directory

 - name: copy config file

 copy:

 src:

/home/rancher/rancher_install/kube_config_cluster.yml

 dest: /home/rancher/.kube/config

 mode: '0644'

 remote_src: yes

…

Once RKE is deployed along with some Kubernetes tools like kubectl to manage the cluster, the
status of the cluster can be monitored with kubectl command line utility, as shown in Figure III-2:

Figure III-2 RKE Cluster Nodes displayed with Kubectl

Kubernetes uses namespaces for application distribution and isolation. Namespaces provide a
scope for names and are a way to distribute cluster resources. For ProTego, each WP4 and WP5
component has been assigned to a separate namespace, i.e., the SIEM component is deployed
in the siem namespace and so on.

III.2.3. Kubernetes Rancher Cluster

For the Kubernetes cluster where Rancher is deployed, K3s is the Kubernetes distribution
selected.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 21

K3s is a lightweight fully-compliant Kubernetes distribution, packaged in a single binary. It uses a
lightweight storage backend based on sqlite3, but other storage backends are available including
etcd which is the usual Kubernetes storage. In ProTego it is deployed using sqlite3.

K3s is wrapped in simple launcher that handles a lot of the complexity of a Kubernetes installation,
much like RKE but smaller and less complex. Operation of all Kubernetes control plane
components is encapsulated in a single binary and process.

This is an extract of the playbook used to install K3s cluster:

- hosts: k3smaster

 vars:

 docker: true

 remote_user: rancher

 tasks:

Install k3s docker runtime

 - name: install k3s docker runtime

 shell: |

 curl -sfL https://get.k3s.io | sh -s - --write-

kubeconfig-mode 644 --node-ip {{ inventory_hostname }} --node-

external-ip {{ inventory_hostname }} --docker

 echo "k3s" > k3s.lock

 args:

 executable: /bin/bash

 chdir: /home/rancher/rancher_install/

 creates: /home/rancher/rancher_install/k3s.lock

 register: result

 when: docker|bool

 - name: debug k3s docker runtime

 debug:

 var: result

…

Once K3s is installed along with kubectl, you can check status of the cluster like in the RKE cluster
using kubectl, as shown in :

Figure III-3 K3s Cluster Nodes displayed with Kubectl

III.2.4. Rancher

Rancher is a complete platform to run Kubernetes clusters on-premises or on-cloud that fits with
multi-cluster, hybrid or multi-cloud container orchestration strategy.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 22

Rancher is an application that is deployed on a Kubernetes cluster. In ProTego, a K3s cluster is
being used, and allows installation and configuration of multiple Kubernetes clusters on-premise
or in the cloud. Once up and running, Rancher allows for day-2 operations management in a much
more user-friendly way:

• Control access to clusters using RBAC.

• Deploy apps and multi-cluster apps from Rancher catalogs (Helm catalogs).

• Monitor workloads.

• Get notifications.

• Connect clusters to CI/CD pipelines.

In addition, Rancher also integrates some popular open-source projects like Prometheus
(monitoring and alerting), Grafana (data dashboards), Fluentd (log collection) and Istio (Service
Mesh). That means users are able to deploy such tools easily from the Rancher UI if necessary.

Best practices recommend deploying Rancher in a dedicated Kubernetes cluster, hence the
Integration Toolkit architecture is comprised of two clusters, the Rancher cluster for the Rancher
application and the Application cluster where all the ProTego components are deployed.

This is the Rancher installation playbook:

- hosts: rancher

 remote_user: rancher

 tasks:

Install rancher

helm install rancher rancher-stable/rancher --namespace

cattle-system --set hostname=rancher.localhost

helm install rancher rancher-stable/rancher --namespace

cattle-system --set hostname=rancher.kubernetes --set

ingress.tls.source=letsEncrypt --set

letsEncrypt.email=noel.tomas@informationcatalyst.com

 - name: install rancher

 shell: |

 helm repo add rancher-stable

https://releases.rancher.com/server-charts/stable

 kubectl create namespace cattle-system

 helm repo update

 helm install rancher rancher-stable/rancher --

namespace cattle-system --set hostname=rancher.kubernetes

 echo "rancher" >

/home/rancher/rancher_install/rancher.lock

 args:

 executable: /bin/bash

 creates: /home/rancher/rancher_install/rancher.lock

 register: result

 - name: debug rancher

 debug:

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 23

 var: result

Once Rancher is deployed in the corresponding cluster, and having the RKE Application cluster,
it is only a matter of registering the Application cluster in Rancher so it can be managed from the
Rancher UI. Users can perform most of the common Kubernetes administration tasks using the
Rancher UI. Rancher could also be used to manage all test and production clusters in a real
production scenario.

Figure III-4 represents the Rancher UI with the local cluster, the k3s Rancher cluster, and the
ProTego cluster, the RKE Application cluster.

Figure III-4 Rancher UI with list of registered clusters

One of the main tasks that can be performed using the Rancher UI is the deployment of
applications, i.e., the ProTego components, in the Kubernetes cluster. The Rancher UI and its
App/Catalog view also allow users to get notifications on available upgrades of ProTego
components. Then it is up to the users to decide when and how to perform the upgrades, usually
deploying it first to a test cluster and, once tested, moving to the production cluster. Users are
also able to review application logs and other app related tasks using this UI.

Figure III-5 represents the list of ProTego deployed components and updates available.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 24

Figure III-5 List of ProTego components deployed in the cluster with updates available

Rancher has an additional grouping feature called projects where namespaces can be grouped
and several policies can be applied at this level, allowing, for instance, separation of concerns for
Kubernetes administrators, and ProTego application administrators if it is a requirement. In
addition, Kubernetes RBAC can also be used in Rancher, so fine-grained user privileges can be
set for different users, clusters or projects.

III.2.5. Istio

Once all clusters and Rancher are set up, an Istio Service Mesh is deployed in the Application
cluster.

A Service Mesh is a dedicated infrastructure layer that can be added to applications and allows
transparent addition of features like observability, traffic management and security without adding
them to the application code.

Istio is an open source Service Mesh that layers transparently onto existing distributed
applications. Istio provides a uniform and more efficient way to secure, connect and monitor
services. Istio is the path to load balancing, service-to-service authentication and monitoring, with
few or no service code changes.

Istio is deployed into a Kubernetes cluster as any other application or component. You can use
Rancher’s out of the box integration of Istio in order to deploy Istio just by clicking a button, but in
ProTego, a more fine-tuned deployment has been selected, in order to deploy the specific
components required.

This is an extract of the Istio installation playbook:

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 25

- hosts: rkemaster

 remote_user: rancher

 tasks:

Install istio

 - name: install istio

 shell: |

 istioctl install

 echo "istio" >

/home/rancher/rancher_install/istio.lock

 args:

 executable: /bin/bash

 creates: /home/rancher/rancher_install/istio.lock

 register: result

 - name: debug rancher

 debug:

 var: result

…

III.2.5.a. How Istio works

Istio has two components: the data plane and the control plane.

The data plane is the communication between services. Istio uses an Envoy proxy deployed along
with each service, as a sidecar container, that intercepts network traffic and allows a broad set of
application-aware features based on the configuration set.

The control plane takes desired configuration and its view of the services, and dynamically
programs the proxy servers, updating them as the rules of the environment change.

Once Istio is deployed in the Kubernetes cluster, it needs to be enabled per namespaces, just by
labeling the namespace:

kubectl label namespace default istio-injection=enabled

This label configures Istio to deploy a sidecar container with every component/service deployed
in this namespace, thus being able to use Istio features.

This is also an advantage since users can select which applications use Istio just by labeling or
not labeling specific namespaces.

For ProTego, all component namespaces are Istio enabled in order to join the Istio Service Mesh.

III.2.5.b. Istio and ProTego

Istio in ProTego is basically being used for Traffic Management and Security.

For traffic management, two key resources are used:

• Istio Gateway: to manage inbound and outbound traffic for the Istio Service Mesh, letting
users specify which traffic is allowed to enter the mesh. Unlike other mechanisms for
controlling traffic entering systems, such as the Kubernetes Ingress APIs, Istio gateways

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 26

allow the usage of Istio’s traffic routing capabilities. Istio’s Gateway resource allow layer
4-6 load balancing configurations such as ports to expose, TLS settings, etc. Then, instead
of adding application-layer traffic routing (L7) to the same resource, an Istio Virtual Service
is bound to the Gateway. This allows management of Gateway traffic like any other data
plane traffic in the mesh. This is an example of an Istio Gateway resource:

apiVersion: networking.istio.io/v1alpha3

kind: Gateway

metadata:

 name: httpbin-gateway

spec:

 selector:

 istio: ingressgateway # use Istio default gateway

implementation

 servers:

 - port:

 number: 80

 name: http

 protocol: HTTP

 hosts:

 - "httpbin.example.com"

• Virtual Service: allows configuration of how requests are routed to a service within an Istio
Service Mesh, building on the basic connectivity and discovery provided by Istio and
Kubernetes. Each virtual service consists of a set of routing rules that are evaluated in
order, letting Istio match each given request to the virtual service to a specific real
destination within the mesh. This is an example of an Istio Virtual Service:

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: httpbin

spec:

 hosts:

 - "httpbin.example.com"

 gateways:

 - httpbin-gateway

 http:

 - match:

 - uri:

 prefix: /status

 - uri:

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 27

 prefix: /delay

 route:

 - destination:

 port:

 number: 8000

 host: httpbin

In the ProTego deployment, a Gateway is deployed per component that needs to be exposed
outside of the cluster. Then a Virtual Service related to that component is bound to that Gateway
to direct traffic to the component. Those resources are packaged in the component Helm chart
and are created when the component is deployed.

Security in Istio relates to Certificate Management, Authentication and Authorization. For ProTego
the focus has been mainly on the Authentication, and more specifically on the Mutual TLS feature
that is deployed out of the box with Istio.

Istio automatically configures workload sidecars to use Mutual TLS when calling other workloads
in the mesh. That means that all traffic between sidecars is encrypted, thus providing an extra
layer of security inside of the cluster. In addition, if any component needs to manage TLS, the
passthrough method of the Gateway resource can be used, in order not to perform the SSL/TLS
termination at the Gateway level.

III.3. ProTego Components

Once the basic platform for the Integration Toolkit is installed and configured, the WP4 and WP5
components have to be deployed to the Application cluster. To this end, the components are built
as Docker containers, and the corresponding Kubernetes resource yaml files have to be designed
and then packaged as Helm/Rancher charts.

Basic guidelines and instructions have been provided to partners on basic Kubernetes resources
and how to package them in Helm charts. Best practices have also been provided for this.

III.3.1. Kubernetes Resources

In Kubernetes, a workload is an application that runs on the cluster. Whether this workload is a
single component or several that work together, on Kubernetes they run inside a set of Pods.
Then workload resources can be used on top of Pods that will manage those Pods on user behalf.
These resources configure controllers that make sure the right number of the right kind of Pods
are running to match the state specified. These resources, like all Kubernetes objects, are
described using a declarative API with yaml files.

For ProTego, the key resources for Kubernetes deployments are Pod, Deployment and Service,
even though some components may have some specific requirements for other resources, like
Stateful or Daemon sets.

III.3.1.a. Pod

Pods are the smallest deployable units of computing that can be created and managed in
Kubernetes. A Pod is a group of one or more containers, with shared storage and network
resources, and a specification for how to run the containers.

A Deployment provides declarative updates for Pods and ReplicaSets (a controller for Pods).
User describes a desired state in a Deployment and the Deployment controller changes the actual
state to the desired state at a controlled rate.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 28

This is an example of a Deployment yaml file:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

 labels:

 app: nginx

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2

 ports:

 - containerPort: 80

III.3.1.b. Service

An abstract way to expose an application running on a set of Pods as a network service,
Kubernetes gives Pods their own IP addresses, with a single DNS name for a set of Pods, and
can load-balance across them.

This is an example of a Service yaml file:

apiVersion: v1

kind: Service

metadata:

 name: my-service

spec:

 selector:

 app: MyApp

 ports:

 - protocol: TCP

 port: 80

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 29

 targetPort: 9376

Other resources can also be used, such as ConfigMap for configuration variables, Secrets for
secret management, PersistentVolumes for persistent storage, PersistentVolumeClaims to claim
a PersistentVolume and use it in a Pod for data persistence, etc. In addition, Istio resources are
also used for traffic ingress, routing and for security enhancement.

Once all resource yaml files are configured, they are packaged or bundled in a Helm chart, using
the values.yaml file to replace template values during deployment time.

III.3.2. Helm and Rancher Charts

Helm is the package manager for Kubernetes. Helm helps to manage Kubernetes applications
using Helm charts. Helm charts help to define, install and upgrade Kubernetes application. Charts
describe even the most complex apps, provide repeatability, and serve as single point of authority.
In addition, charts are easy to version, share and host on public or private servers.

A helm chart is a collection of files that describe a related set of Kubernetes resources. A single
chart might be used to deploy a simple app such as a single nginx pod or a more complex app
such as a full web app stack with HTTP servers, databases, frontend, backend, and so on.

Charts are created as files in a particular directory tree and can be packaged into versioned
archives to be deployed. The directory name is the name of the chart, without the versioning
information.

A sample Helm chart structure for an app:

app/

 Chart.yaml: a yaml file containing information about the chart

 README.md (optional): a human-readable readme file

 values.yaml: the default configuration values for this chart

 charts/ : directory containing any charts upon which this chart depends

 templates/ : directory of templates, that is the templates of the

 Kubernetes resource files that, combined with values,

 generate valid Kubernetes manifest files

A Helm chart uses the files in the templates/ directory as templates of Kubernetes resources for
the application. Then the values file is used to render valid Kubernetes resources from the
templates during deployment time.

In ProTego, Rancher charts - which are a superset of Helm charts - are used to deploy
applications to the Kubernetes cluster using Rancher.

Rancher charts are very similar to Helm charts, differing only in the directory structure, which
includes an app version directory charts/app/version/ … and two additional files :

• app-readme.md: a text-based file that provides a high level overview display in the
Rancher UI.

• questions.yaml: matches any values.yaml variable that needs or requires to be displayed
in the Rancher UI during deployment, so that a user can set specific values for specific
variables during deployment time from the Rancher UI.

This is an extract of the Helm chart for the SIEM, that shows contents of values.yaml and the
kafka-deployment.yaml.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 30

values.yaml:

Secrets --

defaultSettings:

 registrySecret: "siem-cred"

privateRegistry:

 registryUrl: registry.gitlab.com

 registryUser: "protego2020"

 registryPasswd: ""

#Image features

image:

 policy: IfNotPresent

 repository: registry.gitlab.com/protego2020/

 elastic: siem/elastic:1.0.0

 logstash: siem/logstash:1.0.2

 kibana: siem/kibana:1.0.0

 wazuh: siem/wazuh-manager:1.0.1

 kafka: siem/kafka:1.0.0

 zookeeper: siem/zookeeper:1.0.0

 gvm: siem/gvm:1.0.1

 openvas: siem/openvas:1.0.1

 postgres: siem/postgres:1.0.0

 gsa: siem/gsa:1.0.0

 analyzer: siem/analyzer:1.0.2

 scheduler: siem/scheduler:1.0.2

 busybox: siem/busybox:1.0.0

Apps to deploy

app:

 elastic: elastic

 logstash: logstash

 kibana: kibana

 wazuh: wazuh

 kafka: kafka

 zookeeper: zookeeper

 gvm: gvm

 openvas: openvas

 postgres: postgres

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 31

 gsa: gsa

 analyzer: analyzer

 scheduler: scheduler

replicas:

 elastic: 1

 logstash: 1

 kibana: 1

 wazuh: 1

 kafka: 1

 zookeeper: 1

 gvm: 1

 openvas: 1

 postgres: 1

 gsa: 1

 analyzer: 1

 scheduler: 1

#Ports exposed

port:

 elastic: 9200

 logstash:

 api: 9600

 filebeat: 5144

 packetbeat: 5244

 winlogbeat: 5344

 heartbeat: 5444

 metricbeat: 5544

 auditbeat: 5644

 analyzer: 9563

 kibana: 5601

 wazuh:

 api: 55000

 agents: 1514

 registration: 1515

 syslog: 514

 kafka: 9092

 zookeeper: 2181

 gvm: 9390

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 32

 openvas: 51234

 postgres: 5432

 gsa: 9392

kafka-deployment.yaml:

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: {{ .Values.app.kafka }}

 name: {{ .Values.app.kafka }}

spec:

 selector:

 matchLabels:

 app: {{ .Values.app.kafka }}

 replicas: {{ .Values.replicas.kafka }}

 strategy:

 type: Recreate

 template:

 metadata:

 labels:

 app: {{ .Values.app.kafka }}

 spec:

 initContainers:

 - name: wait-for-zookeeper

 image: {{ .Values.image.repository }}{{

.Values.image.busybox }}

 command: ["/bin/sh","-c","until nc -z -w 3 {{

.Values.app.zookeeper }} {{ .Values.port.zookeeper }}; do echo

'Waiting for Zookeeper...'; sleep 5; done"]

 containers:

 - env:

 - name: KAFKA_ADVERTISED_HOST_NAME

 value: {{ .Values.app.kafka }}

 - name: KAFKA_ADVERTISED_LISTENERS

 value: PLAINTEXT://{{ .Values.app.kafka }}:{{

.Values.port.kafka }}

 - name: KAFKA_PORT

 value: {{ .Values.port.kafka | quote }}

 - name: KAFKA_CREATE_TOPICS

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 33

 value: SSM:1:1,CA:1:1,GW:1:1,MS:1:1

 - name: KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR

 value: "1"

 - name: KAFKA_ZOOKEEPER_CONNECT

 value: {{ .Values.app.zookeeper }}:{{

.Values.port.zookeeper }}

 image: {{ .Values.image.repository }}{{

.Values.image.kafka }}

 imagePullPolicy: {{ .Values.image.policy }}

 name: {{ .Values.app.kafka }}

 ports:

 - containerPort: 9092

 nodeSelector:

 numNode: {{ .Values.selector.kafka | quote }}

 restartPolicy: Always

 {{- if .Values.defaultSettings.registrySecret }}

 imagePullSecrets:

 - name: {{ .Values.defaultSettings.registrySecret }}

 {{- end }}

Helm or Rancher charts in Rancher are deployed using Catalogs. A Catalog is a Git or Helm
repository filled with Helm Charts ready to be deployed.

In ProTego, two main catalogs are being used. The integration catalog is used in the Integration
ProTego deployment for development and testing of the different components. The production
catalog is where the Helm charts get pushed once they are validated in the integration
environment.

Both catalogs use GitLab as the git repository, the integration one being an on-prem deployment
of GitLab, and the production one being the GitLab cloud SaaS free tier offering. This Production
catalog is then registered in all the ProTego environments, i.e., OSR, MS. Once components are
pushed to the GiLab cloud repository, they can be deployed or upgraded in those use-case
environments.

Figure III-6 shows the ProTego catalog with the list of ProTego components:

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 34

Figure III-6 Rancher ProTego catalog with list of ProTego components

The WP4 and WP5 components can be deployed using the Rancher UI one by one. That allows
users to deploy the different components selectively and start integrating them in separate steps
into their current software stack, and also allows customisation of specific settings for the
components. That customisation can be set through the Rancher UI, using the variables from the
questions.yaml file in the component chart.

Figure III-7 represents the deployment of a ProTego component from the Rancher UI setting some
of the questions.yaml variables:

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 35

Figure III-7 Rancher UI view for component deployment setting the questions.yaml variables

III.4. Platform Deployments

One of the main tasks in WP6 has been providing support for partners in the project to :

• Design the components Helm charts and deploy them to the Integration Platform

• Integrate the WP4 and WP5 components

• Help for case studies partners to deploy the Integration Toolkit

• Help for case studies and WP4 and WP5 partners to deploy the components into the use-
case platform

Regarding the platform deployment, three different environments have been provisioned with the
Integration Toolkit and ProTego:

• Integration Environment: the main Integration ProTego deployment where WP4 and WP5
partners are able to deploy and test their components and integrations.

• OSR: deployment of ProTego at OSR facilities for the OSR case study, Foodcoach. This
is an on-premise deployment using infrastructure provided by OSR. Deployment of the
Integration Toolkit was mainly conducted by OSR Staff using Ansible playbooks and
instructions provided from WP6 in the scope of WP7. Support to deploy the ProTego
components from WP4 and WP5 was also provided, not only from WP6 but also from
WP4 and WP5. Some troubleshooting was also performed due to some issues that arose
when installing the Integration Toolkit and some components.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 36

• Marina Salud: deployment of ProTego for the Marina Salud case study, PocketEHR. This
is a fully on-cloud deployment using Amazon AWS. For this deployment, Marina Salud
provisioned an EC2 instance for the Rancher cluster that was deployed using the Ansible
playbooks. Then Marina Salud provisioned and registered in Rancher an EKS cluster,
which is a manged Kubernetes cluster from Amazon AWS. As in the OSR deployment,
support was also provided for WP4 and WP5 component installation.

The architecture in this case is exactly the same as the on-premise deployments, the main
difference is that the Application cluster is a managed service from Amazon, so users do
not have to bother about maintenance of that cluster. The Rancher cluster is still deployed
to a virtual machine, an EC2 machine from Amazon, so that cluster is managed by the
user. Deployment of Rancher and of the ProTego WP4 and WP5 components is
performed in the same way as in an OnPrem deployment. This means that, once having
access to Rancher, there is no difference between using an on-premise or an on-cloud
deployment; the Rancher interface for Kubernetes and the Integration Toolkit is the same.

III.5. Integration Steps

These tables show the integration status at this stage of the project.

A set of stages of the integration were defined. All integration steps have been completed.

Table III-1: Stages of Integration

Stage Step Status

Stage 1: Component
Assembly

Base Platform Completed

Guidance Notes Completed

Vanilla Projects Completed

Stage 2: Component
Integration

Vanilla Project Swap outs for
Partner Contributions

Completed

Application Integrations Completed

SSM Stub APIs Completed

Platform Migration Completed

Integration Guidance Completed

Network Slicing Implementation Completed

Steps have been broken down further into an integration plan for the ProTego toolkit.

Table III-2: Integration Steps for the Final Prototype

Step # Description Status

1 Dockerise all components Completed

2 Create an orchestration file Helm Chart, or Docker compose yaml
for each component

Completed

3 Integrate each component with its own version of the platform
(using a local version with vagrant)

Completed

4 Deploy all components on a central system Completed

5 Integration between components within WP Completed

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 37

6 Integration between WP4 and WP5 Completed

7 Integration of Network Slicing On-going

8 Integration between each use-case and WP4 and WP5 On-going

All steps have been completed apart from Network Slicing in the case studies. The Network
Slicing requires interaction with hardware on site. It has been already integrated in the OSR case
study in the scope of D7.3, and is currently being integrated in Marina Salud case study in the
scope of D7.4.

III.6. Continuous Integration / Continuous Deployment (CI/CD)

Modern development practices and DevOps are strongly based on CI/CD pipelines, in which
developers are frequently merging code changes in a central repository where the building, unit
tests, integration tests, delivery and deployment are automatically run.

Continuous Integration relates to the building and testing stages, where an automatic pipeline or
process is triggered upon a code merge and the result is a new version of the application with the
latest code changes. Continuous Delivery is an extension of the pipeline where the new version
of the application is published and ready to be deployed in a specific environment.

Continuous Deployment relates to the deployment stage, that is, after the Continuous Integration
and Delivery steps the application is automatically deployed to a specific environment, e.g.,
Production.

In ProTego we have mainly focused on the Continuous Deployment pipeline, though there has
been some work on Continuous Delivery.

To run CI/CD pipelines, Jenkins along with GitLab is used: Jenkins as the main tool to design and
run the CI/CD pipelines, and GitLab as the repository for Docker images and Helm charts.

The overall picture for the CI/CD pipeline in ProTego can be seen in Figure III-8.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 38

Figure III-8 ProTego CI/CD Pipeline

The CI pipeline is triggered on a code merge, using Jenkins. The component is compiled and
tested if it has unit tests. Then the resulting application is built into a Docker image and pushed
to the GitLab container registry in the Integration environment.

After that, the Helm chart for the component has to be updated by the component developer. The
minimum update required would be updating the chart version and the new Docker image tag,
when the only change is an update of the component version. Other Helm chart updates may be
required at some point, when adding new Kubernetes resources for instance, but that kind of
change should not be frequent, since the Helm chart design is already performed.

The update of the Helm chart triggers the CD pipeline, which deploys the component to the
Integration Platform via Rancher.

Developers can inspect the pipeline status and results in the Jenkins UI as shown in Figure III-9:

Figure III-9 Jenkins Pipeline Status View

Once the component is deployed, component developers must perform some validations and
after that approve the update. This approval is performed using the Jenkins UI. The pipeline
remains in pause mode until the update is approved. If the update is approved, this triggers a kind
of Continuous Delivery pipeline that will publish the updated Docker image and Helm chart to the
ProTego cloud GitLab repository. This repository has been previously registered in the case
studies deployments, making the new version available for testing and deployment right after
being published. shows a snapshot of the pipeline Approval step:

Figure III-10 Jenkins Pipeline Approve Step

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 39

Deployment of the case studies has not been implemented in the CI/CD pipelines, since the
decision to update a component version should be made by those responsible for the case
studies, who should make the decision as to when and where the new version is deployed. Ideally,
any future ProTego customer should have two ProTego environments, Testing/Integration and
Production.

Because some of the components from WP4 and WP5 are built from different open-source
software and have their own code repositories, it is difficult to gather all those different repositories
into one and implement a proper Continuous Integration pipeline to build the components
automatically upon code changes. For ProTego, the CI pipeline is provided as an optional feature
that the different components can use. This feature could be effectively used in a future
exploitable ProTego toolkit, where the different owners of the components would keep developing
and pushing changes to the code, and the CI pipelines would be triggered to build and test this
code.

Jenkins uses a version.properties file configured in the component GitLab repository. It is used to
configure a set of environment variables that will be used during the run of the pipeline. Those
variables can be used in all stages of a pipeline.

Table III-3 shows a list of the different variables being used for the pipelines in ProTego:

Table III-3 List of Variables used at Jenkins version.properties file

VARIABLE Description

HELM_VERSION Version Chart of the component

IMAGE_VERSION New Image Version (Tag)

REGISTRY_CREDENTIAL Jenkins ID of Development Gitlab and Container Registry Credentials.

REGISTRY_PRODUCTION_CREDENTIAL Jenkins ID of Production Gitlab and Container Registry Credentials.

REPOSITORY Development Gitlab code repository

BRANCH Branch where the code is located

MAVEN_POM_PATH Location of files to generate the Artifacts

MAVEN_ARTIFACTS Location of artifacts for production

DOCKER_FILE_PATH Location of the Dockerfile

IMAGE_NAME Docker image name for Development stage

IMAGE_PRODUCTION_NAME Docker image name for Production Stage

CONTAINER_IMAGE_REGISTRY Container registry for Development URL

PRODUCTION_IMAGE_REGISTRY Container registry for Production URL

APP_NAME App name used for installation.

CHART_NAME Chart Name

USERNAME Username

PRODUCTION_REPOSITORY Location of the Production Charts

DEVELOPMENT_REPOSITORY Location of the Development Charts

CLUSTER_CONFIG_PATH Location of config-multi containing development and production cluster.

Some of these variables need to be modified by the component developers when updating
changes.

In order to set up a pipeline, Jenkins uses the JenkinsFile, that is also stored in the component
GitLab repository. The JenkinsFile contains the different stages required for a specific pipeline
with the different steps in each stage. It is the single source of truth for the pipeline and contains

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 40

its definition, being the foundation of Pipeline-as-code which treats the CI/CD pipelines as part of
the application, to be versioned and reviewed as code. It is a best practice to use a JenkinsFile
rather than configuring the pipeline using the UI. This is an extract of the JenkinsFile that shows
the stage of Deployment on Staging Environment:

pipeline {

 stages {

 …

 stage ('Deploy on Staging Environment (K3s) ') {

 steps {

 script {

 try {

withCredentials([usernamePassword(credentialsId:

"$REGISTRY_CREDENTIAL", usernameVariable:

'USERNAME', passwordVariable: 'PASSWORD')]){

 sh 'echo uname=$USERNAME pwd=$PASSWORD'

 echo USERNAME

 sh 'helm upgrade --install $APP_NAME

$CHART_NAME/'+ "$HELM_VERSION" +' --set

privateRegistry.registryUser=$USERNAME,priva

teRegistry.registryPasswd=$PASSWORD --

kubeconfig $CLUSTER_CONFIG_PATH'

 }

 } catch (err){

 echo err.getMessage()

 }

 }

 }

 }

 …

III.7. Storage

Files in a container are ephemeral, which presents some problems for stateful applications when
running in containers. One problem is the loss of files when the container crashes. Kubernetes
restarts the container but with a clean state. Another problem occurs when sharing files between
containers running together in a pod. Kubernetes volumes and persistent volumes solve such
problems.

A persistent volume Kubernetes resource is a piece of storage in the cluster that has been
provisioned by an administrator or dynamically provisioned using Storage Classes.

A persistent volume claim is a request for storage, for a specific persistent volume or storage
class, that will be mapped within a Pod to a container directory.

Typically, persistent volumes use local filesystem for data persistence, but some other issues
arise in multi node clusters. If a Pod, with a local persistent volume, crashes, Kubernetes may
choose to deploy it to a different node. In that case, data is not moved to the new node, thus

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 41

resulting in data loss from the application. Another issue could be when different pods need to
share a persistent volume. In that case, both Pods need to be in the same node to access the
same data in the volume.

In order to solve those issues, a Network File System (NFS) storage is used as the storage layer
for persistent volumes. The NFS volume option allows the sharing of an existing Network
Filesystem, to be mounted in the pod. If the pod is deleted or rescheduled in a different node,
data is preserved. Figure III-11 shows a snapshot of an NFS volume for the DataGateway
component:

Figure III-11 NFS Volume

Then it is just a matter of using the NFS option in the Kubernetes Persistent Volume resource as
is shown in this example of a PV yaml file for the DataGateway:

{{- if .Values.persistence.enabled -}}

apiVersion: v1

kind: PersistentVolume

metadata:

 namespace: {{ .Release.Namespace }}

 name: {{ .Values.app.name }}-pv-volume

 labels:

 type: local

spec:

 capacity:

 storage: {{ .Values.app.volumes.pv.capacity }}

 accessModes:

 - ReadWriteOnce

 persistentVolumeReclaimPolicy: Retain

 claimRef:

 name: {{ .Values.app.name }}-pv-claim

 namespace: {{ .Release.Namespace }}

 {{- if eq .Values.volumes.type "local" }}

 hostPath:

 path: "{{ .Values.volumes.basepath }}"

 {{- else }}

 nfs:

 server: {{ .Values.volumes.nfs_server }}

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 42

 path: "{{ .Values.app.volumes.pv.path }}"

 {{- end }}

{{- end }}

III.8. Next Steps

Some key points which would improve features provided by the Integration Toolkit have been
identified. This work may be performed partially in the scope of the remainder of ProTego, or in
the scope of possible future projects, and includes:

• Improving the installation steps.

• Researching on Kubernetes Native Storage.

• Researching on Cloud / Terraform.

• Integrating other Kubernetes DevOps utilities.

III.8.1. Installation Steps

The installation of the Integration Toolkit can be made more user friendly by wrapping the run of
the Ansible playbooks with a backend APi and a Frontend, everything bundled in a Docker
container.

At the moment, as has been described, the Integration Toolkit installation is performed running
the Ansible playbooks. Those playbooks are run one by one, following the installation instructions.

In order to improve this process, all playbooks and software would be packaged in a Integration
Toolkit Docker Container. This image would be ready to run Ansible, so there would be no need
to install any software at the installation environment other than Docker.

Backend software would be developed and packaged, providing an HTTP API to run the
playbooks.

A frontend UI would be developed to provide the interface for the users to run the playbooks,
similar to an installer. This UI would guide users step by step through the installation process.

Users would be able to run the Docker image on a specific node of the environment, or even from
their own laptops, in order to install the Integration Toolkit.

Deployment of the WP4 and WP5 components would be also included in this installer.

III.8.2. Kubernetes Native Storage

Besides using NFS as the storage layer for persistence in the Integration Toolkit, additional tests
are being performed with Kubernetes Native Storage systems.

Such storage systems provide an abstraction layer of a distributed persistent storage to the Pods
or components. They provide high availability and replication of the data, so that data is always
accessible for a Pod from any node.

There are different technologies that provide such abstraction levels:

• Longhorn.

• GlusterFS.

• Rook+Ceph.

• OpenEBS.

• StorageOS.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 43

Initially Longhorn could be tested, which was originally a project from Rancher, but is now a CNCF
project.

Longhorn is a highly available persistent storage for Kubernetes, which uses the local filesystem
of the nodes and provides replication and backups. It is deployed on a Kubernetes cluster as a
regular application using a Helm chart. It is used by the application by selecting the specific
StorageClass in a Persistent Volume Claim.

III.8.3. Cloud / Terraform

As has been described above, the Marina Salud case study has been deployed to Amazon AWS
cloud service using a mix of EC2 instances and EKS.

This opens up the possibility for the ProTego toolkit to be deployed as SaaS in the cloud, or for
other On-Cloud deployments.

Terraform allows infrastructure to be expressed as code (Infrastructure as Code) in a language
called HCL, similar to yaml and other declarative languages. It reads configuration files and
provides an execution plan of changes, which can be reviewed and then applied and provisioned.
Extensible providers allow Terraform to manage a broad range of resource, including IaaS, PaaS,
Saas and hardware services.

Terraform is used to provision infrastructure across different public clouds and services, creating
reproducible infrastructure, provisioning consistent testing, staging and production environments
with the same configuration.

The idea is that by using a combination of Ansible and Terraform, different configurations can be
set up to deploy the Integration Toolkit and ProTego to different cloud providers, with Terraform
being used to provision the infrastructure, and Ansible to provision the software, as at present.

III.8.4. Other Kubernetes DevOps Utilities

DevOps is a trending topic nowadays, and is mostly based on using Containers and Kubernetes.
The Kubernetes ecosystem and tooling is growing exponentially, providing a number of extra
features and functionalities that Kubernetes may not offer out of the box.

These include:

• Extended Secret Management : Sealed-Secrets, Helm-Secrets …

• Multi-tenancy beyond namespaces: Kiosk …

• GitOps which is an extension of CI/CD for Kubernetes: ArgoCD, The GitOps Toolkit …

• Resource publishing across namespaces.

• Others …

Future work would be to research the most appropriate of these technologies and incorporate
them into the Integration Toolkit.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 44

 COMPONENT RESOURCES
Each component is described in the same format for ease of understanding, with a diagram and
description of the components and their internal layout. These components are based on the
resources supplied in D6.1 Resources section. The template and diagram key are described
below.

IV.1.1. TEMPLATE: WP: Component Name (ACRONYM- Partner)

IV.1.1.a. Component Description

Describe the components functionality

This component is formed of these sub-components

1. SubcomponentName: Description of technologies and function

2. SubcomponentName: Description of technologies and function

3. SubcomponentName: Description of technologies and function

IV.1.1.b. Component Diagram

Figure IV-1: Key for Component Diagram

IV.2. WP4: Cybersecurity risk assessment tools

WP4 focuses on risk assessment tools that will be able to monitor and assess risk of the running
system and during design. This is formed of two major components: The System Security
Modeller and the Security Information and Event Management. These two components allow

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 45

modelling and measurement of the system to provide an update on a risk based on the information
collected from the ProTego system.

IV.2.1. WP4: System Security Modeller (SSM – IT Innovation)

IV.2.1.a. Component Description

The System Security Modeller (SSM) is one of the risk assessment analysis tools in the ProTego
project. SSM is a web-based graphical tool which allows a system designer or analyst to perform
a design-time risk assessment of a system using the procedures defined by ISO 27005. Figure
IV-2 gives an overview of the high-level architecture of the constituent services and underlying
triple store. SSM is a web-based application with a user interface for a system of back-end
components which is accessible via a browser application. The interface exposes selected parts
of the models, such as collections of assets or threats (read only) or update methods to allow
users to edit models provided by a model service. A RESTful API is defined to provide the end-
points that enable access to the services of SSM, either directly through API requests, or using
the SSM UI via a browser, or some other application. The calls received through the REST layer
are then sanitised and passed to the underlying model querier and model validator components.
A low-level semantic store component allows access to the actual triple store, i.e., data entities
composed of subject-predicate-object. The store contains one core model, and potentially
multiple domain and system models. All models are stored in separate graphs, allowing for easy
import and export. As part of the ProTego project an extra SSM microservice has been developed
to mediate the communication between SIEM and SSM. The microservice offers a REST API for
SIEM to send http requests and a pub/sub channel for sending messages to Kafka in SIEM (see
D4.3 for a more detailed description of the SSM microservice and the communication between
SSM and SIEM).

IV.2.1.b. Component Diagram

Figure IV-2: High level architecture of the System Security Modeller tool.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 46

IV.2.2. WP4: Security Information and Event Management (SIEM –
Inetum)

IV.2.2.a. Component Description

The SIEM is the ProTego tool that monitors security during run-time. This is accomplished by
collecting information from various sources, enriching data, correlating different pieces of
information, and analysing all the set.

There are diverse SIEM components, each one with a specific objective:

1. Beats: Agents installed on monitored systems and used for capturing data such as log
events, network packets, metrics, etc. The destination is Logstash in most cases.

2. Logstash: Data Collection Engine. It can unify data from disparate sources and normalize
data into destination (in most cases ElasticSearch).

3. Wazuh Agent: It is installed on monitored systems and used to collect different types of
system and application data that it forwards to the Wazuh Manager.

4. Wazuh Manager: Correlation Engine in charge of analysing the data received from the
agents. It uses decoders to identify the type of information being processed and extract
relevant data elements. Next by using rules it can identify patterns in the decoded records.
Data is stored into ElasticSearch indices.

5. ElasticSearch: Storage, Index, and Search Engine. It is the central repository where all
information will be stored.

6. Kibana: Analytics and Visualization platform of information stored in ElasticSearch
indices. It is the user interface of the SIEM.

7. MachineLearning: Processes that analyse network traffic to detect threats using Deep
Learning techniques.

8. VA Scheduler: Vulnerability Assessment Scheduler. It generates the different tasks that
will trigger the operations in OpenVAS.

9. OpenVAS: Vulnerability Scanner. It executes a continuously updated and extended feed
of Network Vulnerability Tests and compiles reports based on the findings.

10. OWASP ZAP: Web Application Vulnerability Scanner. It searches for vulnerabilities in web
applications and compiles reports based on the findings.

11. VA Analyser: Vulnerability Assessment Analyser. It processes the reports generated by
OpenVAS, complement additional information, store it on ElasticSearch, and send it to the
SSM. The SSM uses this information to recalculate risk.

12. Kafka: Stream-Processing Platform. Used a message bus by other components to send
information to the SIEM where it will be processed by Logstash.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 47

IV.2.2.b. Component Diagram

Figure IV-3 High Level Architecture of the SIEM

IV.3. WP5: Cybersecurity Risk Mitigation Tools

WP5 focuses on the risk mitigation tools and technologies. There are four main components:
Continuous Authentication, Data Gateway, Access Control Framework and Network slicing.
Together they provide secure access authenticated access to medical data, and secure it at rest
and in transit.

IV.3.1. WP5: Continuous Authentication (CA - UAH)

IV.3.1.a. Component Description

The continuous authentication (CA) system is the main component centred in mobile device
security. CA is a method of verification that continuously monitors and authenticates users based
on collected data. Through this component ProTego is capable to identify the authorized users
and unauthorized users of mobile devices.

The continuous authentication system is composed by the following main components:

1. CA Agent: This component is a mobile agent that retrieves behavioural metrics and sends
them to the API. The CA agent performs as an Endpoint Detection and Response (EDR).
The main task of this component is to retrieve information to continuously authenticate the
user, but it also has response capabilities. For example, CA agent can raise a security
alert to inform other components like the SIEM.

2. CA API: This component is a backend that centralizes the logs and associates each of
them with the users' identity. Periodically, this API generates machine learning models
based on the logs stored and evaluates the new incoming logs against these models.

These two components are responsible of the correct performing of the CA system. A typical
behaviour for checking the device user authorization will be the following: the CA agent
periodically asks for the trust of a user; the backend checks all the logs stored since the creation
of the model and returns a value between 0 and 1 (a trustworthiness percentage).

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 48

IV.3.1.b. Component Diagram

Figure IV-4: High level architecture of the Continuous Authentication Component.

IV.3.1. WP5: Data Gateway (DG - IBM)

IV.3.1.a. Component description

The Data Gateway (DG) is the interface between external REST-based clients with and the
ProTego backend storage of FHIR resources. The DG stores FHIR resources in encrypted
Parquet format, and allows for powerful SQL queries of the stored data.

Conceptually, the Data Gateway consists of two subcomponents:

a) A FHIR server which receives FHIR requests over REST and stores FHIR resources
as encrypted Parquet files,

b) Query Gateway which implements a REST end point to receive SQL queries and
execute them against the encrypted Parquet files.

The DG communicates with the Access Control Framework to obtain the required encryption keys
for authenticated users, and posts notifications to a Kafka message queue on refused access to
the Key Management System or detected tampering attempts of the stored Parquet files.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 49

IV.3.1.b. Component Diagram

Figure IV-5: Component Level Diagram

IV.3.2. WP5: Access Control Framework (ACF – KU Leuven)

IV.3.2.a. Component Description

The access control framework (ACF) component is one of the main components in the ProTego
risk mitigation system. The main application of the ACF component is to enhance the security of
the Data Gateway (DG) by ensuring that only authorized users can have access to FHIR data
that is stored externally. It consists of the following two sub-components:

1. Key Management Service (KMS): This component is used to protect the Key Encryption
Keys (KEK) that are needed by the Data Gateway to access FHIR data1. The KEKs are
not stored directly in the KMS, but are encrypted/decrypted with a master key that is stored

1 Note that the KEK is not used directly to encrypt/decrypt FHIR data. Instead, the FHIR data is encrypted
with a Data Encryption Key (DEK), which is then encrypted with a KEK.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 50

internally in the KMS. Therefore, when access to FHIR data is needed, the DG will make
encryption/decryption queries to the KMS to get access to the corresponding KEK. Within
the ProTego project, the open-source solution Vault from Hashicorp is used to provide the
KMS functionality.

2. Access Control (AC): This component is used to manage the encryption/decryption
queries made to the KMS, and decide whether the KEK should be sent to the DG or not.
This decision depends on whether the data access request – which triggered the DG to
query for the KEK – should be granted or not. Internally, it consists of the following
functions:

a. Token validation: Users and their corresponding roles and attributes are identified
by a token issued by an external Identity and Access Management (IAM) system.
The token validation function checks whether the token that is passed to the AC is
valid token or not.

b. Policy decision point: Based on the content of the token, the auxiliary information
that is stored together with the KEK and the security policies in place, the policy
decision point will decide whether a particular data access request, and its
corresponding query to the KMS to get a KEK, should be granted or not.

c. Policy enforcement point: This is the main interface between the KMS and the AC.
It will pass encryption/decryption queries to the KMS, and will get an
encrypted/decrypted KEK back from the KMS. Based on the output of the token
validation and policy decision point, it then will either pass this encrypted/decrypted
KEK to the DG, or give an error message.

The KMS and AC jointly realize the access control framework functionality. However, besides
interacting with the DG, it is indirectly also linked to an external IAM. The latter is not one of the
components developed by ProTego, but is needed to make access control decisions. The main
goal of the IAM is to manage all the users in the system and their respective roles and/or attributes
(e.g., being a doctor in hospital x). Users authenticate to the IAM, and receive a JSON WebToken
(JWT) upon successful authentication. These tokens are digitally signed by the IAM. Two different
IAMs are used in the ProTego project. The first IAM is Keycloak, which is an open-source
framework. The second IAM is AWS Cognito, which is an Amazon Web Services (AWS) product.

IV.3.2.b. Component Diagram

The diagram of the access control framework is shown below.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 51

Figure IV-6: Subcomponents of the ACF and their high-level interfaces.

IV.3.3. WP5: Network Slicing (NS - IMEC)

IV.3.3.a. Component Description

The network slicing control functions in ProTego are formed by 3 main components which may
be virtualized:

• The 5G-EmPOWER controller that interacts with the Wi-Fi APs or Wireless Termination
Points (WTPs) through the 5G-EmPOWER protocol. It also interacts with the SDN
controller (Backhaul controller) through a Pub/sub API to express the client configuration
to the rest of the network.

• The SDN controller (backhaul controller) will configure the level-2 network through the
OpenFlow protocol to enable wireless slices to extend to the wired domain. It will also tag
application traffic accordingly to allow Wi-Fi slicing by the APs.

• The Secure Interface Setup component will provide end-to-end security by interacting
with the ProTego backends.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 52

IV.3.3.b. Component Diagram

Figure IV-7: The component level diagram for the Network Slicing Component

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 53

 REQUIREMENTS
This section covers requirements. Initial requirements are those from deliverable D6.1,
augmented with new requirements collected as part of the integration work and initial estimates
of resource usage which are needed for the hardware specification.

V.1. Initial Requirements

This section covers requirements of differing natures:

• Use-case: from D6.1 and D6.2, these provide the basic requirements for the use-cases;
further information can be found in D2.3.

• Project: from D6.1 and D6.2, baseline needs, given the nature of the project consortium
and goals.

• Lifecycle: from D6.1 and D6.2, thinking beyond the baseline needs to managing the
development of the project.

Table V-1: Summary of Initial Requirements from D6.1 and D6.2

Nature Requirement Success Criterium

Use-case FoodCoach ProTego handles FHIR data

Use-case FoodCoach ProTego security fits with a web and
mobile frontend architecture

Use-case Pocket EHR ProTego handles bulk data storage in
Parquet file

Use-Case Pocket EHR ProTego needs to include on on-cloud
component

Project Modular and
Extensible

ProTego provides a continuous integration
toolkit around Docker containers allowing
for new components to be added and
other components to be updated

Project Security Manages both patient data and security
data

Project Network slicing The network slicing means the overall
technology needs to benefit from the
hardware router customisation.

Lifecycle Updates The use of continuous integration tools
helps to maintain not only the ProTego
tools but also the medical application (as
applicable)

Lifecycle Platform ProTego needs the toolkit to be provided
as a platform to allow for deployment in a
standardised and manageable way. And to
give a baseline architecture for the
ProTego component and the use-cases to
run from

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 54

V.2. Integration Requirements

Integration requirements are specific requirements in respect of each component to make sure
they fully integrate with the rest of the ProTego Toolkit.

V.2.1. WP4: System Security Modeller

Table V-2: Integration Requirements from the SSM

V.2.2. WP4: Security Information and Event Management

Table V-3: Integration Requirements from the SIEM

V.2.3. WP5: Continuous Authentication

Table V-4: Integration Requirements from Continuous Authentication

Integration Requirements and Interfaces with other components

Requirement Description Success Criteria Nature

1 Receive vulnerabilities report Vulnerability successful
passed to the SSM API

With WP4:
SIEM

2 Publish recommendations to the
SIEM

A recommendation is
successfully published to
the message bus

With WP4:
SIEM

Integration Requirements and Interfaces with other components

Requirement Description Success Criteria Nature

1 Supply of vulnerabilities report to
SSM Microservice

Successful sending
vulnerability information

REST API

2 Receive recommendations from
the SSM

Successful reception of
recommendations

Kafka

3 Receive alerts from WP5
components (Data Gateway,
Access Control Framework, and
Continuous Authentication
Backend)

Successful reception of
alerts

Kafka

Integration Requirements and Interfaces with other components

Requirement Description Success Criteria Nature

1 Android's EDR service should be
launched by the partner's
application

Partner’s application
starts successfully the
EDR agent and can pass
messages

Android
implementation

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 55

V.2.4. WP5: Data Gateway

Table V-5: Integration Requirements from Data Gateway

V.2.5. WP5: Access Control Framework

Table V-6: Integration Requirements from Access Control Framework

Integration Requirements and Interfaces with other components

Requirement Description Success Criteria Nature

1 The ability to interface the ACF
with the Data Gateway using a
REST API interface

An acceptable header and
payload format with the
endpoints
transit/encrypt/MkId or
transit/decrypt/MkId

Curl
command

2 Receiving an access token from
the external IAM (Amazon
Cognito or Keycloak)

A valid access token that
is signed and includes the
user attributes

JSON Web
Token
(JWT)

3 Keycloak configuration

An acceptable
configuration that is
compatible with the ACF

Sign-up and
sign-in
services

4 AWS Cognito configuration

An acceptable
configuration that is
compatible with the ACF

Sign-up and
sign-in
services

V.2.6. WP5: Network Slicing

Table V-7: Integration Requirements from Network Slicing

Integration Requirements and Interfaces with other components

Requirement Description Success Criteria Nature

2 Receiving an access token from
the external IAM (Amazon
Cognito or Keycloak)

A valid access token that
is signed, includes the
user attributes and
specific pre-shared
authorities (i.e., "groups",
"roles", "scope", etc)

JSON Web
Token (JWT)

Integration Requirements and Interfaces with other components

Requirement Description Success Criteria Nature

1 Network connectivity between all
WP 4 and 5 components

Successful execution of
the retrieval and
subsequent querying of a
FHIR resource.

Integration
Toolkit

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 56

1 Deploy all 3 network slicing control
components as described in WP5.
Multiple instances may be
required.

Successful control of
network slices for different
clients and traffic types.

All
Components

2 Access to the ProTego API to
receive application profiles and
access to the ProTego
authentication and encryption
services.

Successful API
implementation and
deployment

REST API

V.2.7. WP6: Integration Toolkit

Table V-8: Integration Requirements from the Integration Toolkit

V.3. Resource Usage

This section presents more accurate estimates for resource usage than in previous deliverables,
after deployment and test in the case studies. They are estimates since tests under heavy load
have not been performed. Resource usage is difficult to predict as for the ProTego Toolkit it
depends on a complex mix of the technology, number of users, amount of data and complex
paths through the system.

V.3.1. WP4: System Security Modeller

The System Security Modeller for the ProTego testbeds incorporates two main components, the
SSM itself, and the SSM-Adaptor kit.

System Security Modeller

The minimum requirements for the production deployment of the SSM cluster is a compute node
with the following specs:

Table V-9: Computing Resource Estimates for SSM

Computation Resource Estimates

Integration Requirements and Interfaces with other components

Requirement Description Success Criteria Nature

1 The ability to update the
components to maintain security

A successful GitLab and
Jenkins CI/CD pipeline

Integration
Toolkit

2 To deploy all WP 4 and 5
components in the same
environment

As validated by D7.2 Integration
Toolkit and
All
components

3 All components have Docker
images, and orchestration file are
uploaded to GitLab

Check for the files on
GitLab

All
components

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 57

CPU (vCPU) 4.0

RAM (GB) 8

Disk (GB) 32

SSM-Adaptor

The SSM-Adaptor deployment requirements are the following:

Table V-10: Computing Resource Estimates for SSM-Adaptor

Computation Resource Estimates

CPU (vCPU) 2.0

RAM (GB) 4

Disk (GB) 4

V.3.2. WP4: Security Information and Event Management

Table V-11: Computing Resource Estimates for SIEM

General Computation Resource Estimates

CPU (vCPU) 14.25

RAM (GB) 22 Gb

Disk (GB) 125 Gb ~ Huge amount of Tb

ElasticSearch Cluster

The minimum requirements for the production deployment of an ElasticSearch cluster are at least
one coordinating node, three master nodes and at least two data nodes.

It is important to emphasize that the number of master nodes cannot be less than 3 and should
always be an odd number.

Table V-12: Computing Resource Estimates for ElasticSearch coordinating node

Computation Resource Estimates

CPU (vCPU) 1.0

RAM (GB) 1

Disk (GB) 1

Table V-13: Computing Resource Estimates for ElasticSearch master node

Computation Resource Estimates

CPU (vCPU) 0.75

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 58

RAM (GB) 1

Disk (GB) 3

Table V-14: Computing Resource Estimates for ElasticSearch data node

Computation Resource Estimates

CPU (vCPU) 1.0

RAM (GB) 3

Disk (GB) ~1000 - Space on demand, as this will depend on the
conditions of data collection. But it is advisable to
reserve space in the order of Tb.

Logstash

The requirements may change depending on the workload, as more instances of Logstash may
be deployed to perform load balancing.

Table V-15: Computing Resource Estimates for Logstash

Computation Resource Estimates

CPU (vCPU) 1.0

RAM (GB) 2

Disk (GB) 5. Although this space can be variable depending on
the input size of the persistent queues

Kibana

Table V-16 Computing Resource Estimates for Kibana

Computation Resource Estimates

CPU (vCPU) 1.0

RAM (GB) 2

Disk (GB) Minimal. Kibana's own information is stored in
ElasticSearch in a dedicated index.

Wazuh Manager

Table V-17: Computing Resource Estimates for Wazuh Manager

Computation Resource Estimates

CPU (vCPU) 1.0

RAM (GB) 2

Disk (GB) 30

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 59

Kafka Stack

Table V-18: Computing Resource Estimates for Kafka

Computation Resource Estimates

CPU (vCPU) 2.0

RAM (GB) 3

Disk (GB) 50

OpenVAS Stack

The requirements will depend on the number of master-slave probes that are established in the
infrastructure.

Table V-19: Computing Resource Estimates for OpenVAS Stack

Computation Resource Estimates

CPU (vCPU) 4.0

RAM (GB) 3

Disk (GB) 30. The size on disk will depend on the size of the
vulnerability database and the size of the scan
reports.

V.3.3. WP5: Continuous Authentication

Table V-20: Computing Resource Estimates for Continuous Authentication

Computation Resource Estimates

CPU (vCPU) 4

RAM (GB) 8.0

Disk (GB) 40. The size on disk will depend on the number of users, and the
number of events generated by these users.

V.3.4. WP5: Data Gateway

Table V-21: Computing Resource Estimates for Data Gateway

Computation Resource Estimates

CPU (vCPU) 2

RAM (GB) 8.0

Disk (GB) Minimal – excluding the storage space required for the FHIR
resources.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 60

V.3.5. WP5: Access Control Framework

Table V-22: Computing Resource Estimates for Access Control Framework

Computation Resource Estimates

Docker container and
total file sizes

16.4kB (virtual 337MB)

V.3.6. WP5: Network Slicing

Table V-23: Computing Resource Estimates for Network Slicing

Computation Resource Estimates

CPU TBD

RAM (GB) 8

Disk (GB) Minimal

V.3.7. WP6: Integration Toolkit

Requirements of Integration Toolkit will depend on the sum of all resources required by the other
components assigned to the worker nodes of the cluster. The Integration Toolkit contains 2
clusters, one for the UI and other for the deployment of the applications. The tables below shows
the suggested requirements with all components.

Table V-24: Computing Resource Estimates for K3S Cluster

K3S (Rancher) Toolkit Computation Resource Estimates

CPU (vCPU) 2

RAM (GB) 4

Disk (GB) ~30

Table V-25: Computing Resource Estimates for RKE Cluster Master Node

RKE Master (Applications) Toolkit Computation Resource Estimates

CPU (vCPU) 4

RAM (GB) 4

Disk (GB) ~30

Table V-26: Computing Resource Estimates for RKE Cluster Worker Node

RKE Workers X2 (Applications) Toolkit Computation Resource Estimates

CPU (vCPU) 4

RAM (GB) 4

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 61

Disk (GB) ~50

Table V-27: Computing Resource Estimates for NFS Node

NFS (Storage) Toolkit Computation Resource Estimates

CPU (vCPU) 2

RAM (GB) 4

Disk (GB) ~100

Table V-28: Computing Resource Estimates for Jenkins Master Node

Jenkins (Master) Toolkit Computation Resource Estimates

CPU (vCPU) 4

RAM (GB) 4

Disk (GB) ~30

Table V-29: Computing Resource Estimates for Jenkins Worker Node

Jenkins (Worker) Toolkit Computation Resource Estimates

CPU (vCPU) 4

RAM (GB) 4

Disk (GB) ~100

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 62

 INTEROPERABILITY
This section is concerned with the ability of ProTego resources to exchange and make use of
information produced and managed by other resources. It includes two major updates to the
interconnections within WP4 and WP5, as well as a section summarising the Dependencies and
Interfaces from T6.1, for which no new items have been needed.

VI.1. Interconnections

There are a significant number of disparate technologies within ProTego, and they all need to
work together for ProTego to achieve its goals of securing the medical systems which it manages.

VI.1.1. Risk Assessment integration

The two core components of the Risk Assessment, the Security Information and Event
Management (SIEM) and the System Security Modeller (SSM), need to integrate. The SSM
requires the SIEM to be able to keep its security models of the system up to date and relevant.
Likewise, the SIEM needs the SSM to aid identification of the rise of potential risks through the
modeller. Each direction in this relationship is implemented independently and using techniques
appropriate for ingestion by each technology.

To combine the capabilities from SSM with SIEM and provide an intelligent threat diagnosis at
run-time, a bidirectional communication should be established between the two systems. The
high-level architecture of the integrated components in WP4 is illustrated in Figure VI-I. To
mediate the communication process, two components has been developed as part of the ProTego
project:

• a Run Time Microservice which resides at SSM and is responsible for receiving
messages from the SIEM system, updating system model parameters and re-calculating
security risks at run-time, as well as providing recommendations for mitigation actions
back to SIEM. The microservice provides a RESTful API for SIEM to communicate with;
and

• a Vulnerability Assessment (VA) component which resides at SIEM. This component
is comprised of two distinct processes; the VA Scheduler, which is responsible for
periodically running vulnerability scans in the given system, monitored using OpenVAS for
the system’s infrastructure and OWASP ZAP for the system’s web applications; and the
VA Analyser, which accepts the output report from OpenVAS and ZAP, enriches it with
additional data and transforms it to parse the information to the SSM microservice.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 63

Figure VI-1 Information flow diagram of the integrated SSM-SIEM system.

Since the flow of events for the integration between the SSM and the SIEM is distinct, each
direction of events flow is handled independently.

From the SIEM to the SSM: the SSM ingests data sent from the SIEM such that the SSM can
update its models. This is supported through a REST interface described by an OpenAPI 3.0
YAML schema provided by the SSM microservice. The source of data is needed at the end of the
processing, and as it is intended to include the use of ElasticSearch for the backend,
ElasticSearch itself can be used as the data source for the SSM. Logstash is an open source data
collection engine in ElasticSearch with real-time pipelining capabilities, and is thus an appropriate
choice for pushing the data into the SSM from ElasticSearch.

SIEM

SSM

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 64

Figure VI-2 SIEM to SSM communication

From the SSM to the SIEM: SSM can directly inform SIEM regarding threats of high risk by
message to SIEM and suggest potential controls and mitigation actions that can be followed via
the SSM Run Time Microservice. The path here is different in that the SIEM is expecting a
telemetry data source to put the data onto an Apache Kafka topic which resides in the SIEM
system (Figure VI-III). The SSM microservice here acts as a Kafka Producer, where a Kafka client
is defined (using a Kafka python library) by specifying the location of the Kafka Broker in SIEM.
This data needs to be enriched with a baseline set of properties and in a specific JSON format.
SIEM can consume the respective Kafka topic(s) and use the telemetry data received to display
them in Kibana.

Figure VI-3 SSM to SIEM communication.

An extensive description of the components developed to mediate the communication between
SSM and SIEM is provided in deliverable, D4.3.

VI.1.2. Risk Mitigation Integration - Data Gateway

The Risk Mitigation aspect of the ProTego project needs to provide the capability for external
interaction outside the bounds of the system in a secure manner. This is achieved using the Data

RUN TIME
MICROSERVICE

SSM ENGINE

Vulnerability
Mappings

Request Lib

SSM

HTTP/REST

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 65

Gateway component with which the externally running applications securely communicate with
the internal backend services such as Parquet.

The Data Gateway provides a secure interface using REST-based SQL-like query or FHIR
resources for use by the medical applications so that they can query and store the data in
encrypted Parquet files. The Data Gateway then utilises the Access Control Framework to identify
the user and thus provide access only to authorised users. The Continuous Authentication system
improves security on mobile devices and the Network Slicing improves the security at the network
layer.

The WP5 integration involves initially three threads:

• Container orchestration: initially this includes the Data Gateway and the Access Control
Framework. These have been orchestrated together using Docker and Docker Compose,
and are developed within the Integration Toolkit to bring them to the ProTego platform.
The backend parts of the other components will also be integrated this way.

• Mobile Devices: the continuous authentication components are focused on bringing
increased security to mobile devices outside of the deployed toolkit.

• Network Layer: the network slicing aims to control the networking on the premise to
increase security.

Integration is on-going, and the different components each need different methods of
communication, including REST, 5G-EmPOWER, Open Flow and VLAN protocols.

VI.2. Dependencies

The dependencies and coupling for the different aspects of the project have been kept to a
minimum. Despite this, by necessity some components are bound together.

Table VI-1: Dependencies for ProTego

Dependency Status

Network Slicing and
Provisioning

This technology is going to focus on
manipulating the hardware of the
hospital network infrastructure. So as
planned it will be integrated into the
final prototype as deployed in the use-
case settings

Data The data will use FHIR protocol where
applicable but additional SQL queries
can the Data Gateway

Access Security provided by the Access
Control Framework allows for secure
connections with the Data Gateway
integration to apply the mechanism to
other components is ongoing.

Communication HTTPS, and REST API as well as the
use of a Kafka message bus will be
the main communication protocols,
although additional protocols are
required by the Network Slicing
component to connect to the
hardware routers of a hospital
network.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 66

VI.3. Interfaces

ProTego utilises several interfaces for communication and identification within the project.

Table VI-2: Interfaces for ProTego

Interfaces Internal/External Status

OpenID Connect BOTH Is a secure interface that can be
used for securing the connections
between components

REST BOTH Is the default for basic
communication flow between
components

FHIR BOTH FHIR allows for specific data
transfers and utilises the REST
protocol.

Kafka Internal Only Is used as a message bus to
supply log messages from the
component to the SIEM to monitor
the security risk of the system

Network Slicing Internal Only OpenFlow, NETCONF and 5G-
EmPOWER protocols are used by
the Network Slicing component to
directly communicate with the
hospital infrastructure

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 67

 RECOMMENDATIONS FROM D6.2 FOR FINAL

PROTOTYPE
In D6.2 some recommendations were added. This section describes how these recommendations
have been addressed for this Prototype.

VII.1. Use-Cases

Recommendation from D6.2: Now we have an intermediate prototype of ProTego it is important
to engage completely with the use-cases. This includes making sure Use-Case applications,
FoodCoach, and Pocket EHR, are integrated with the ProTego toolkit.

For further details we can address D2.3 for further use-case requirements and descriptions of
how each of the applications will be deployed.

How it has been addressed: The Integration Toolkit has been deployed to the case studies, at
OSR and MS. In addition all ProTego components have been deployed at OSR, and is on-going
for MS with some already deployed as the DataGateway and SIEM.

VII.2. Iterative Workflow

Recommendation from D6.2: The next stage of ProTego will follow an iterative approach to
finalise integration and bring the use-cases on board. Suggested goals for this iterative workflow
include

• continuous Integration to manage the changes between versions;

• including example use-case applications on the central platform; and

• deploying the platform in a hospital environment.

This iterative workflow will be driven by these goals, but also as each change is managed by the
continuous integration system it will allow for incremental updates to the system to deal with the
challenges provided by these goals. At that point we will have the framework and components to
deal with these challenges.

How it has been addressed:

• Continuous Integration has been deployed in the Integration Platform

• No use case application has been deployed in the Integration Platform since this is being
tested in the case studies

• Platform has been deployed in both case studies: OSR and MS

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 68

 CONCLUSIONS
This document shows the architecture, requirements, and integration toolkit for ProTego.

The architecture is composed of several discrete components from WP4 and WP5 and the
integration toolkit from WP6. Each component is contained with a Docker container allowing for
easier integration.

The work done in the scope of WP6 related to the Integration Toolkit is described in detail with
successful deployment of the Integration Toolkit and ProTego components in three different
environments, Integration, OSR and MS.

Work in WP6 has also focus on supporting the partners in order to integrate their components
and the case studies partners in order to deploy the platform.

Requirements, resources and component interoperability have been also revisited. The
requirements include several aspects from D6.1 and D6.2, as well as updates based on the need
for integration between components. We list the requirements and their success criteria.

This document addresses the interoperability between WPs as well as the dependencies and
interfaces of the project.

Continuous Integration is an important part of the project and the successful deployment of a
CI/CD pipeline in the Integration Environment has been also described.

Recommendations from D6.2 have been addressed successfully.

D6.3 – Final prototype: Architecture, requirements, and integrated toolkit Version: 1 / Date: 31/07/2021

ProTego 69

