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Executive summary 

This report summarizes the work done by WP5 Cybersecurity Risk Mitigation Tools over the 
course of the project. 

In particular, while presenting an overall view of the complete solution developed by this work 
package, this deliverable will give particular emphasis to the efforts done in the second half of 
the project and supplements the D5.2 deliverable which was released at project month 
eighteen.   

This work package focuses on supplying an end-to-end solution for securely exchanging 
medical information between hospital data centers and end locations, which may be remote 
care locations or authorized end user devices, such as tablets or smart phones.  As such, this 
work package looks at securing data-in-motion through the development of network slicing 
technologies, data-at-rest through the development and use of Apache Parquet file encryption, 
Attribute-Based Encryption (ABE) and its integration into access control schemes, and data-
in-process using hardware enclaves such as Full Memory Encryption (FME) enclaves, such 
as AMD SEV.   

Work package 5 has provided ProTego and the scientific community in general, with 
innovations to protect data.  While healthcare and the hospital environment were chosen as 
our main focus, these innovations can be applied a wide range of other use cases. 
 
Work package 5 was instrumental in the development and acceptance of the Apache Spark 
Parquet Modular Encryption standard and help spearhead the development of the official code 
release. Additionally, advanced data protection topics in this work package are contributing to 
IBM’s Open-Source development of “The Mesh for Data”. 
 
Two security schemes were developed for ProTego.  The CP-ABAC scheme offers security 
against a compromised access control and key management system, while still allowing to 
enforce fine-grained access control policies during read requests on sensitive medical data. 
An alternative solution, C-ABAC, was studied as well to support the revocation of users’ 
attributes in addition to the security properties already offered by C-ABAC. Both schemes offer 
high security guarantees and are suitable to be applied in the use cases of the ProTego 
project.  
 
The CA module contributes to the ProTego project mobile device security through a scalable 
architecture to continuously authenticate users based on their interactions with their mobile 
phones. Research contributes to the state of the art with an increase in the accuracy and other 
target metrics using keystroke mechanics with the soft keyboards of mobile devices. 
 
The research done in network slicing proposes to use state-of-the-art airtime-based network 
slicing to provide 5G-like performance isolation for mission critical applications in the hospitals. 
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I. INTRODUCTION 
 

Work Package 5, Cybersecurity Risk Mitigation Tools, focuses on supplying an end-to-end 
solution for securely exchanging medical information between hospital data centers and end 
locations, which may be remote care locations or authorized end user devices, such as tablets 
or smart phones.  As such, this work package looks at securing data-in-motion through the 
development of network slicing technologies, data-at-rest through the development and use 
of Apache Parquet file encryption and Attribute-Based Encryption (ABE), and data-in-process 
through the use of hardware enclaves such as Full Memory Encryption (FME) enclaves, like 
AMD SEV.  WP5 also provides a framework to manage authentication of both users and 
software entities in the system, as well as access control to sensitive medical data.   

Leveraging emerging technologies such as 5G networks and the HL7 FHIR standard for 
electronic health records, WP5 supplies a key part of the infrastructure upon which ProTego’s 
use cases run.  In addition, WP5 goes beyond infrastructure creation and tackles issues of 
both usability and deriving extra value from the existing data – for example, by supplying a 
framework for performing analytics on the stored medical data. 

WP5 has been designed to provide WP4, Cyber Risk Assessment Tools, with the SIEM input 
that it will require for Risk Analysis when suspected tampering of stored encrypted Parquet 
files is detected or the Access Control Framework (Section III) returns an access violation. 
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II. TRUSTED DATA GATEWAYS AND EXCHANGES (IBM) 

II.1.1.  Overall achievements 

In the second half of the project, this task rounded out its work on the advanced encryption of 
medical data, adding an innovative double key wrapping to its Open-Source work on Parquet 
Modular Encryption including a comprehensive performance study.  We then showed how our 
solution for the Data Gateway can be run in a secure hardware partition to provide protection 
for data-in-process.  Advance security topics were pursued by contributing to the development 
of the on-going development work IBM is leading in The Mesh for Data. 

II.1.2.  Second half work 

II.1.2.a.  Secure Enclaves (Trusted Execution Environments, TEEs) 

Background: 

Our planned work on Full Memory Encryption (FME) enclaves in the second half of the project 
aims to protect data-in-process and complements our work on Parquet encryption for data-at-
rest. 

Intel’s Software Guard Extensions (SGX) came out in 2015 and introduced hardware support 
for the execution of relatively small functions inside of designated enclaves.  However, due to 
a number of issues such as the need to rewrite applications to work with SGX and the 
limitations on enclave size, commercial adaptation of SGX was very limited. 

AMD’s Secure Encrypted Virtualization (SEV) integrates main memory encryption with AMD-
V virtualization architecture to support encrypted virtual machines. Encrypted virtual machines 
are protected from snooping not only from other guest VMs on the system, but also from the 
hypervisor itself, which typically runs at a higher Linux privilege level. Therefore, code running 
inside an SEV-encrypted VM is safe from both physical attacks on the host machine (e.g. the 
removal and subsequent dumping of non-volatile, DVDIMM memory), and from attacks from 
a malicious hypervisor on the host machine. In addition to hardware support, operating system 
support is also required for SEV. As opposed to Intel SGX technology, software running on 
SEV does not require any changes to operate. 

In the second half of the project, we experimented with SEV in order to demonstrate that it 
indeed supports our ProTego components.   

In order to initiate a SEV VM on Ubuntu, the following command was used: 

 

Figure 1: Starting up a SEV secure enclave on Ubuntu 

 

We able to confirm that SEV is active in the VM as shown below: 

 

Figure 2: Verification that SEV is active 
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Attempts to snoop into memory in this secure enclave failed, as can be seen below. 

 

Figure 3: Failure to snoop memory in secure enclave 

 

This can be contrasted with the same command, executed outside of a secure enclave:  

 



 

D5.3 – Description of the final cybersecurity risk mitigation tools  

ProTego  11 

Figure 4: Memory snooping outside of a secure enclave 

 

We were able to seamlessly run our ProTego components in an SEV enclave, without needing 
code refactoring. 

 

It should be noted that the technology behind TEEs is still evolving, as a number of side-
channel attacks on secure enclaves have been discovered in a controlled laboratory 
environment (Intel® SGX Technology and the Impact of Processor Side-Channel Attacks, 
2020). Additionally, industrial-strength deployment of secure enclaves is still a difficult task, as 
an enclave must be attested as being secure in order to avoid the attack scenario where a 
malicious, insecure enclave can spoof a user into believing that it is a TEE, potentially 
exposing sensitive applications. 

Efforts such as the Red Hat sponsored Open Source project, Enarx, (Bursell, 2019) which is 
working to provide cross-silicon support for secure enclaves, as well as provide  the attestation 
of the TEE, are underway, and it is expected that the use of TEEs will become more 
commonplace in the future as implementation barriers are lowered. 

While secure enclaves vastly reduce the threat of attacks on data-in-process, workloads on 
the cloud may still be vulnerable to data leakage due to the current state-of-the-art in 
networking technology. To this end, in the second half of the project, WP5 joined forces with 
IBM’s on-going, Open Source The Mesh for Data (M4D) project (IBM, n.d.) (See Section 
II.1.2.c. ) 

II.1.2.b.  Performance Evaluation for Parquet Modular Encryption Double Key 
Wrapping 

As part of our work on Parquet Modular Encryption, we developed and designed an encryption 
key management system which uses a unique double wrapping method to improve efficiency.  

When writing a Parquet file, a random data encryption key (DEK) is generated for each 
encrypted column and for the footer. These keys are used to encrypt the data and the 
metadata modules in the Parquet file. 

The data encryption key is then encrypted with a key encryption key (KEK), also generated 
inside Spark/Parquet for each master key. The key encryption key is encrypted with a master 
encryption key (MEK), either locally if the master keys are managed by the application, or in 
a Key Management System, for example Vault, as is the case in ProTego. 

Encrypted data encryption keys and key encryption keys are stored in the Parquet file 
metadata, along with the master key identity. Each key encryption key has a unique identity 
(generated locally as a secure random 16-byte value), also stored in the file metadata. Key 
encryption keys are cached by access token, so there is no need to interact with the 
KeyProtect service for each encrypted column or file if they use the same master encryption 
key.  (See Figure 5) 
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Figure 5: Parquet double key wrapping 

 

When reading a Parquet file, the identifier of the master encryption key (MEK) and the 
encrypted key encryption key (KEK) with its identifier, and the encrypted data encryption key 
(DEK) are extracted from the file metadata. 

The key encryption key is decrypted with the master encryption key stored in Vault. The key 
encryption keys are cached by access token, so there is no need to interact with the 
KeyProtect service for each decrypted column or file if they use the same key encryption key. 
Then the data encryption key (DEK) is decrypted locally, using the key encryption key (KEK). 

II.1.2.c.  The Mesh for Data 

The Mesh for Data is a cloud native platform to unify data access and governance, enabling 
business agility while securing enterprise data being developed as Open Source by IBM. 
Based on Kubernetes, M4D smoothly integrates with the ProTego technologies developed in 
the first half of the project, and brings together access and governance for data, greatly 
reducing risk of data loss or leakage.  The incorporation of M4D in our framework is a natural 
complement to the rest of the work done in WP5 – Parquet Modular Encryption protects data 
at rest, secure enclaves protect data-in-process, and The Mesh for Data protects the data at 
the policy level. 

The Mesh for Data is a sophisticated framework, consisting of a Control Plane and a Data 
Plane. The M4D Control Plane, as the name suggests, controls the deployment of 
components that are required to connect a data requester to the desired data source, and 
includes: 

• A Policy Manager to implement a Policy Decision Point (PDP) which decides whether 
data under the given request and environmental conditions is allowed to flow between 
two services. 

• A Blueprint Manager which determines what components need to be deployed to 
provide a secured data path between the requester and the data source, 

• A Credential Manager which is responsible for supplying the control plane with access 
tokens, to allow connection to a data source, without exposing sensitive tokens to user 
applications. 
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• A Catalog for holding registered data assets and the metadata associated with these 
assets. 

• A Plotter which is used to plan and distribute multi-cluster deployments. 

The Control Plane is agnostic to data requirements of a hosted application, whereas the Data 
Plane, triggered by the Control Plane, implements the actual data communication 
mechanisms and connectivity.  This architecture is depicted in Figure 6. 

 

Figure 6: The Mesh for Data architecture 

 

The Data Plane relies on a Kubernetes custom resource (CRD) called an M4DModule which 
handles the communication protocol required between the data requester and data 
source.  An example of an M4DModule is the Arrow Flight module, which is responsible for 
marshalling large amounts of data between two points, using the Apache Arrow protocol.  The 
M4DModule is responsible for communicating with the Policy Manager to determine what data 
can be returned to the requestor. The REST M4DModule, developed for use in ProTego, 
receives information in the HTTP header (which may be encoded in a Java Web Token (JWT) 
or passed as a HTTP header variable) which encodes information about requestor, such as 
role and organization. Before allowing a requester access to a REST endpoint, the ProTego 
REST M4DModule passes this information to the Policy Manager, to determine whether to 
block or allow URL access. If access is allowed, the M4DModule will once again query the 
Policy Manager with the received user credentials to determine what fields, if any, in the data 
being passed back needs to be redacted before being returned to the user, as will be 
described in more detail in the next section. 

ProTego relies heavily on a REST M4DModule which it is developing for accessing data using 
the REST protocol.  

The M4D provider will supply the M4DModule - the application developer does not need to be 
aware of its existence. The application developer will need to fill out a template YAML file, 
called an M4DApplication, which describes the purpose for which the data is being requested, 
and a pointer to the catalogued data source, called a dataset id, including a description of the 
format of the stored data which is required for selection of the appropriate M4DModule. 
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It is a simple matter for an application developer to create the M4DApplication to bring up the 
required ProTego WP5 secure enclave framework and deploy it - the M4D system will set up 
the rest.   

An illustration of how this works is given in Figure 7. Users request access to FHIR resource 
via a dashboard, which communicates with Keycloak to obtain a JWT which encodes the role 
of the requester. The dashboard sends the REST request for the FHIR resource to the 
published address of the k8s ingress end point, (istio ingress gateway), which validates the 
JWT and then forwards the REST request to the M4DModule. The Module will then query the 
Policy Manager whether or not to allow the given role access to the end point, as will be 
described in section 0 If the query is allowed, the Module will then proxy the original request 
to the original REST target – which, for the ProTego use cases, is a FHIR server. The Module 
receives the returned resources from the FHIR server, and once again queries the Policy 
Manager to determine if any fields need to be redacted before finally returning the data to the 
caller. 

 

Figure 7 - the ProTego REST M4DModule in the use cases 

 

 

Implementing access control, deciding whether or not a requester should be given access to 
a data source, the ProTego REST M4DModule enables fine-grained access control on data 
returned from the source, based on role-based policy.   

As an example of the power that this enables, we can consider access to FHIR resources in 
a healthcare environment today – either a user is allowed or not to access a FHIR server.  
Given access to a FHIR server, the user is free to access any stored resource.  Taking this a 
level deeper, any user accessing a given FHIR resource is allowed to see all the information 
in the resource. 

Using M4D technology, ProTego is able to improve upon this model.  

M4D implements a Policy Manager, which uses Open Policy Agent (OPA) (Open Policy Agent, 
n.d.).  OPA includes both a language for expressing policy, called Rego, and an engine for 
evaluating the policy against given input – i.e. a Policy Decision Point (PDP).    
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M4D creates a Kubernetes Custom Resource called, Asset, which describes each data 
source, specifying a general classification for the type of data that the data source supplies 
(e.g. “HR data”, “accounting”…) as well as specification of which of the fields in the data source 
should be considered as Personal Identifiable Information (PII). An example of how this could 
be done for a FHIR Patient resource is shown below.  Note that the assetMetadata.tags is 
given the value of “personal”. This is an arbitrarily chosen classification, however we will use 
this value in the policy definition, as will be described.   
 
Under componentsMetadata, the field “id” is classed as PII. 
 

apiVersion: katalog.m4d.ibm.com/v1alpha1 
kind: Asset 
metadata: 
name: patient 
spec: 
assetDetails: 
dataFormat: fhir 
connection: 
type: REST 
assetMetadata: 
tags: 
- personal 
componentsMetadata: 
id: 
tags: 
- PII 

Figure 8 - Specifying a data asset 

We now have a characterization of a data source, and as explained in section II.1.2.c. , a 
specification of the role of the data requester from the passed JWT. Both of these are used as 
inputs to the Policy Manager, which firstly determine if a given user (or role) is allowed to 
access the requested data source based on the characterization of the type of the data 
specified in the corresponding Asset (e.g. the tag value for the assetMetadata field in the Asset 
definition). 

If a user is allowed to access a data source, then the ProTego REST M4DModule requests 
from the Policy Manager to get a list of all fields which must be redacted. The Policy Manager 
invokes the OPA engine on the defined policy – which itself exists as a Kubernetes Custom 
Resource holding the Rego code which defines the policies. 

An example of a simple policy is given in Figure 9 - Access policy definition.  In this case, the 
Policy Manager will be asked to assess the rule “blocklist” to determine whether or not to give 
the requester access to this data asset, and the rule “filters” to get a list of all fields that need 
to be redacted.  In this case, we are allowing all users access to all FHIR resources but redact 
the PII fields (as defined in the corresponding Asset CRD) for users in the “admin” role. 

apiVersion: v1 

data: 

  main: | 

    package katalog.example 

    import data.kubernetes.assets 

 

    filters[output] { 
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       count(rule)==0 

       asset := 
assets[input.request.asset.namespace][input.request.asset.name] 

       output = {"name": "No filtering by default!", "action": "Allow"} 

    } 

 

    filters[output] { 

        count(rule)>0 

        output = rule[_] 

    } 

 

    rule[{"name": "Redact PII columns if admin for personnel data", "action": 
"RedactColumn", "columns": columns}] { 

       asset := 
assets[input.request.asset.namespace][input.request.asset.name] 

       contains(input.request.role, "admin") 

       columns := [c | asset.spec.assetMetadata.componentsMetadata[i].tags[_] 
= "PII"; c = i] 

    } 

    

    blockList[output] { 

       output = {"name":"Allow all URLs", "action": "None"} 

    } 

 

kind: ConfigMap 

metadata: 

  creationTimestamp: null 

  labels: 

    openpolicyagent.org/policy: rego 

  name: policy 

  namespace: katalog-system 

Figure 9 - Access policy definition 

 

II.1.2.c.1.  Improving Vault integration 

ProTego uses Hashicorp’s Vault Key Management System to secure store encryption keys 
used by Parquet Modular Encryption in the use cases.  

Requests sent to Vault must be accompanied by an authentication token. In the first half of 
the project, this initial authentication secret was created together with the Vault instance, and 
then coded into the application code. While this was considered acceptable for a proof-of-
concept demonstration of using Parquet Modular Encryption in a use case environment, it is 
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of course not a product-level solution; not only must the authentication key be manually 
transferred to the application, but the key will must be coded in the application. 

In order to design a better solution to this problem, in the second half of the project, starting 
with a Kubernetes deployment of ProTego components, WP5 collaborated with M4D to 
improve upon this solution. 

Building upon Vault’s Kubernetes auth method, the following high-level protocol was used: 

1. A YAML file for the deployment of a k8s service account was created and added to the 
Helm chart which deploys the Vault server. 

2. The Kubernetes auth method was enabled in Vault Docker image. 

3. Deployment of the Data Gateway (DGW) (see deliverable D5.2 for a functional 
description of the DGW) in the k8s environment automatically creates a Kubernetes 
service account, which encodes a Java Web Token (JWT) and CA certification which 
is discoverable from the DGW pod. The values for the JWT, CA cert and Kubernetes 
cluster are stored in the Docker Vault image. 

4. A k8s ConfigMap is created which creates a Vault Agent configuration file, specifying 
the use of Kubernetes auth method on the Vault server. Additionally, a location in the 
pod (“sink”) for storing the returned Vault authentication token is specified. The name 
of the ConfigMap is attached to the YAML for the deployment of the DGW. 

Now, the rest is automatic – when the DGW is deployed, it will request authentication from the 
Vault server based on its JWT and CA certificate. When Vault receives this request, it will 
contact the Kubernetes Authentication Service running on the cluster to validate the DGW.  
Successful validation will result in Vault returning a client authentication token to the DGW 
pod, which will automatically be stashed in the sink location. The DGW code can access the 
token, and subsequently store this as a Hadoop configuration for use by the Parquet Modular 
Encryption code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

D5.3 – Description of the final cybersecurity risk mitigation tools  

ProTego  18 

III. ACCESS CONTROL FRAMEWORK (KUL) 

III.1.1.  Basic access control framework 

During the first half of the ProTego project, the efforts in task 5.3 focused on designing and 
developing a base solution for managing and protecting access to confidential data. This 
solution has been described in deliverable D5.2 and has been further enhanced during the 
second half of the ProTego project. Below, we first briefly revisit this basic access control 
framework. In the rest of this section, we then discuss our improvements to this solution. 

III.1.1.a.  Functionality of the basic protocol 

The access control framework is responsible for the authorization and Key Management 
Service (KMS) to enhance the ProTego Data Gateway (DGW) security. The main purpose of 
the access control framework is to decide whether a data consumer is allowed to retrieve the 
plaintext data or not (authorization service). Let’s look at how a data producer/consumer can 
upload/access (resp. read) the medical data.  

Once the data producer wants to send the data to the DGW, it first authenticates itself to the 
external Identity and Access Management (IAM) component and obtains an authorization 
token (the IAM is responsible for managing the attributes of all users of the system and 
generating the authorization token based on these attributes and the expiration time). The 
data producer then sends to the DGW the token together with all the medical data it wants to 
upload. The DGW now encrypts this data and sends the key encryption key (KEK) to the 
access control component. The KEK is then forwarded – via the access control interface – to 
the open-source Vault key management service (KMS). The KMS will use an internal key – 
the master encryption key (MEK) - to encrypt the KEK and the data producer’s parameters 
(i.e. the content of the authorization token) – into a wrapped KEK.  This wrapped KEK is then 
sent back to the DGW for storage along with the encrypted medical data.   

 

Figure 10 - Protocol to access medical data 

As depicted in Figure 10, when a data consumer wants to access the encrypted medical data, 
it first authenticates itself to the external IAM and obtains an authorization token. Then, it sends 
the authorization token to the DGW. The DGW relays this token to the access control 
component. It is important to note that the DGW, in addition to the authorization token, also 
sends the master key identity and the wrapped KEK associated with the medical data that the 
data consumer wants to retrieve to the access control component.  At this point, the access 
control component checks the validity of the token (i.e., being a legitimate token that is not yet 
expired) and for which the medical data access is requested. Next, the control interface 
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forwards the outcome of this evaluation (token valid or not) to the Policy Decision Point (PDP). 
The Policy Decision Point will need additional information (i.e. the data producer’s parameters 
associated with the KEK) to make a proper security decision (i.e. to grant access or not). This 
input is processed in two stages. First, the Control Interface component relays the wrapped 
KEK and the master key identity to the KMS to fetch the unwrapped KEK and the 
corresponding data producer’s parameters (i.e. the owner’s identity, the owner’s role and the 
group to which the owner belongs). Second, the access control interface component forwards 
these parameters to the Policy Decision Point. Based on all this information and applicable 
security policies, the Policy Decision Point will now be able to decide if access should be 
granted to the data consumer.  This decision is based on pre-defined security policies that are 
stored in the Policy Decision Point component.  

III.1.1.b.  Limitations of the current solution 

Although the basic access control framework described above provides the necessary security 
functionality, it also has some limitations. 

First of all, as mentioned above, the current authorization service is based on static security 
policies. Since the access policy is stored in the Policy Decision Point and also constant 
parameters are statically linked to the KEK, the policies cannot be automatically changed 
when the system evolves. This means that the current version of the access control framework 
(presented in Figure 10) does not meet the requirements for dynamic security policies (e.g. 
when the admin of the system wants to change the policies). Therefore, we propose a new 
representation of a policy, called dynamic policy access control, which could be generated 
and bound dynamically to the wrapped KEK. 

Moreover, if an adversary would compromise both DGW and access control components, then 
they would be able to decrypt all the encrypted data. To improve upon this, the 
encryption/decryption keys need to be constructed based on not only secret parameters stored 
in the access control component but also secret parameters (e.g. secret key) from a non-
colluding third party (for example the data producer). To this aim, we proposed an enhanced 
access control solution that relies on Ciphertext-policy attribute-based encryption (CP-ABE). 
In this scheme, the medical data first gets protected based on security policies defined by the 
data producer. Afterwards, the medical data gets an additional round of protection, based on 
the system’s security policies. We also propose a Cryptographic attribute-based access 
control (C-ABAC) scheme that can provide a user revocation mechanism. An important 
property of the proposed revocation mechanisms, as will be discussed later, is that all the non-
revoked data consumers' secret keys will not be updated when a revocation event occurs. It 
is worth noting that in the conventional revocation mechanisms, all encrypted data need to be 
re-encrypted to prevent the revoked data consumer from using their secret key for decryption. 
Thus, all other non-revoked data consumers should receive updated secret keys, which is not 
efficient. 

The next sections present an overview of our 3 proposed improvements: i) Dynamic policy 
attribute-based access control (D-ABAC) protocol, ii) Ciphertext-policy attribute-based access 
control (CP-ABAC) scheme and iii) Cryptographic attribute-based access control (C-ABAC) 
scheme. The D-ABAC protocol replaces our basic access control solution explained above. 
The D-ABAC scheme can then be further extended with either the CP-ABAC protocol or the 
C-ABAC protocol. 
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III.1.2.  Dynamic policy attribute-based access control 
(D-ABAC) protocol 

 

III.1.2.a.  Description 

To propose a new representation of a policy, called dynamic policy access control, we enhanced our 
access control architecture by relying on Open Policy Agent (OPA) (Open Policy Agent, n.d.). OPA is 
an open-source engine that unifies policy enforcement across the stack. OPA provides a high-level 
declarative language (Rego) that lets us specify policy as code and simple APIs to offload policy 
decision-making from our access control component. When our component needs to make policy 
decisions it queries OPA and supplies structured data (e.g., JSON) as input. Then OPA outputs policy 
decisions by evaluating the query input against policies and data. The policies that the admin of the 
system defines can be inspected and transformed using Rego. It is important to note that policies from 
several existing policy systems can be implemented with the OPA using the Rego language. Figure 11 
shows an example of the Attribute-based access control (ABAC). With attribute-based access control, 
one makes policy decisions using the attributes of the users (e.g. a user being a doctor) involved in the 
request.  

 

Figure 11 - Rego example for ABAC 

In this example, user_attributes is an attribute set of the user. We could also have some 
dynamic attributes such as “tenure” (e.g., doctor joined the hospital more than 10 years ago) 
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for the users. According to the policies defined in this example, the OPA will return “true” in 
the cases where i) the data consumer has the role of doctor, ii) the data consumer is the data 
producer, or iii) their identity was assigned to the KEK at the time of wrapping. In the latter 
case, the data producer must send these assigned identities (the ‘input’ shown in Figure 10) 
to the access control component through DGW. 

 

 

Figure 12 - Dynamic ABAC Protocol to access medical data 

High-level overview of the D-ABAC architecture: 

First of all, it is important to stress that our proposed D-ABAC solution replaces our initial basic 
access control framework. In the D-ABAC scheme, we rely on a new component, denoted as 
the ABAC Policy Decision Point, to realize dynamic ABAC. As depicted in Figure 12, the ABAC 
Policy Decision Point component includes Token-based Policy Agent (TPA) and Open Policy 
Agent (OPA). It also supports updating the security policies. 

Token-based Policy Agent (TPA): 

The TPA is based on a simple access control rule that was defined in the Policy Decision Point 
component of the basic access control framework. This simple access control rule states that 
the user that creates the data (i.e. data producer) always can access their own data (it means 
that the TPA evaluates the identity of the data consumer and will grant access to this user if 
the data consumer is the data producer). By using this simple access control rule, already 
many access control requests (i.e. the data producer’s requests to access their produced data) 
can be handled. Therefore, TPA is a fast decision point that improves the efficiency of the 
access control system.    

Open Policy Agent (OPA): 

In the cases that the requester (data consumer) is not the data producer, the ABAC Policy 
Decision Point sends the request (Query) to the OPA using specific CLIs. The Query which is 
the file with the JSON format includes the Token parameters, data producer’s parameters, 
and data producer’s input (note that parameters and input of the data producer are fetched 
from the Vault, similarly as in the basic access control framework). OPA generates policy 
decisions by evaluating the query input and security policies stored in policy files. 
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Updating the security policies: 

When OPA starts for the first time, it will not have any security policies. Policies can be added, 
removed, and modified at any time. Since OPA accepts external data, the system will support 
dynamic policy access control. This dynamic property is based on external input and policy 
files. 

Input file 

Often policies require external data that is not available to the OPA. The query can include 
external data (necessitating of course that the policy is written accordingly). The Policy 
Decision Point acts as below: 

• It sends a query to OPA including the external input data (Figure 13 shows an example 
of the input data) and token parameters. 

• OPA makes a decision based on the query and the external policy file.  

 

 

Figure 13 - Example of input data (JSON format) 

 

Policy file 

The policy file is expressed in the Rego language (see Figure 11). This file is under the control of the 
security administrator of the system. The administrator can add or remove one or more policies inside 
this file at any time. The OPA will make its access control decision based on this file and the query. 
Figure 14 demonstrates the example of the query including the name of the external policy and input 
files. 

 

 

Figure 14 - Example of a query to OPA 

 

III.1.2.b.  Implementation 

The rest of this subsection walks through the implementation of D-ABAC in more detail. 

We built the new Docker image (kulacc:v6)  to add D-ABAC properties to the current version 

of the Docker image (kulacc:v2). This version of the Docker image has the following 

functionalities. 

• Enable or disable JWToken verification 
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It is possible to enable or disable token verification using the “TOKEN_VERIFY” 
environment. 

- Running the Docker image with -e TOKEN_VERIFY=1  and -e PUBLIC_KEY= 

“public key string” enables JWToken verification. 

- Running the Docker image with -e TOKEN_VERIFY=0 or without 

“TOKEN_VERIFY” environment disables JWToken verification (should only be 
used for testing). 

• Policy environments 

It is possible to choose the policy file using the “POLICY_RULE” environment.  

- Running the Docker image with -e POLICY_RULE=0 enforces the pre-defined 

internal policies. 

- Running the Docker image with -e POLICY_RULE=1 enforces the external Rego 

file as policies. 

Note: to read the external Rego file from the host machine, the Docker image 
should run with the -v flag. The command -v <directory on the host 

machine>:/var sets up a bind-mount volume that links the /var directory from 

inside the container to the directory on the host machine. Docker uses: to split the 

host’s path from the container path, and the host path always comes first. The 
Rego file should be in the <directory on the host machine> directory. 

Whenever the system administrator changes the content of this file, the ABAC 
Policy Decision Point component of the access control container uses the new 
content as policy rules (necessitating of course that the policy is written 
accordingly).  

 

III.1.3.  Ciphertext-policy attribute-based access control 
(CP-ABAC) scheme 

Since both DGW and access control components are executed and managed in the same 
cloud environment, and therefore most likely managed by the same entity, an adversary who 
compromises this cloud environment would be able to obtain all necessary secret keys to 
decrypt all the encrypted medical data that is stored externally. To mitigate this problem, one 
should only be able to retrieve the encryption/decryption keys by using secrets from the access 
control component and secrets from another external entity that does not collude with the 
DGW or access control framework. For the latter, we will rely on the data producer itself. In 
summary, one can only retrieve the necessary keys to encrypt/decrypt the medical data when 
both the DGW/access control framework and the data producer contribute. None of these 
parties in isolation is able to get the encryption/decryption keys. 

To this end, we propose an enhanced access control scheme called CP-ABE. In CP-ABE, a 
ciphertext is encrypted with access policies over attributes – called access structure. Any data 
consumer whose attributes satisfy the access policy can decrypt the ciphertext; otherwise, the 
decryption fails. Associating the access policy with the ciphertext means that the ciphertext 
chooses which key can recover the plaintext, giving the data producer more control of its 
outsourced data. Generally speaking, three entities are responsible for running the CP-ABE 
scheme:  (i) attribute authority, (ii) data producer, and (iii) data consumer. The role of the 
attribute authority is to generate system public and master secret keys and issue attribute 
secret keys to each data consumer based on their corresponding attribute list. A data producer 
chooses an access policy themselves and integrates that into the ciphertext. Then, the data 
consumer has the means for decrypting the ciphertext to retrieve the original data based on 
their attribute secret keys.  
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It is important to stress that the CP-ABE protocol is a security enhancement of our access 
control framework. Therefore, it can be combined with either the basic access control 
framework (developed during the first half of the ProTego project) or the D-ABAC solution (see 
Section III.1.2. ). In the ProTego project, we have opted for the latter, as this provides the most 
functionality. 

In our enhanced scheme, the medical data first gets encrypted based on security policies 
defined by the data producer. After this encryption, the result is then forwarded to the DGW. 
The rest of the process is similar as in the D-ABAC solution described in Section III.1.2. When 
requesting access to the data, the DGW will now send an encrypted medical file to the data 
consumer (assuming that the access control framework granted access). The data consumer 
can then decrypt this data and retrieve the plaintext medical data when it has all the necessary 
attributes, as was defined by the security policies of the data producer. 

Note: In the enhanced scheme there are two types of polices; i) policies defined by the data 
producer, and ii) policies defined by the organization (e.g., hospital). The data consumer can 
access to the data iff they can satisfy both of these policies. 

Let us now look more into detail in this scheme. 

High-level overview of the CP-ABAC architecture: 

As demonstrated in Figure 15, our proposed CP-ABAC relies on attribute-based encryption 
(ABE) (Sahai, 2005). Integrating ABAC into the ABE technique provides us a possibility to 
encrypt the outsourced information (e.g. FHIR data) and protect it from attacks when both the 
DGW and access control framework are compromised. Using ABE, even if an adversary 
compromises both DGW and access control components, they would not be able to read the 
sensitive information. The algorithms and steps of the proposed CP-ABAC scheme are as 
follows. 

Algorithms: 

The scheme consists of six algorithms: Setup, AES-Enc, CP-ABE-Enc, ABE-KeyGen, CP-
ABE-Dec, and AES-Dec. 

Setup 

This algorithm generates a pair of public parameters (pp) and a master secret key based on 

the system security parameter and an attribute space. The IAM runs this algorithm, stores the 
master secret key, and publishes pp. 

Note: In the CP-ABAC scheme, one attribute authority administrates all system attributes. This 
authority has the master secret key that is used to derive all users’ decryption secret keys. 
When CP-ABAC is combined with D-ABAC, the IAM plays the role of the attribute authority. 

AES-Enc 

This algorithm picks a random key K_AES. It then uses this key and the AES encryption 

algorithm to encrypt the FHIR data. The output of this algorithm is the ciphertext CT_AES. The 

data producer runs this algorithm. 

CP-ABE-Enc 

This algorithm is the encryption algorithm that takes as input the public parameters, K_AES as 

a message, and an access structure A over the universe of attributes (i.e. a security policy 

based on the attributes). The algorithm will encrypt K_AES and produce a ciphertext CT_ABE 

such that only a data consumer that possesses a set of attributes that satisfies the access 
structure will be able to decrypt the message (and hence retrieve K_AES). We will assume 

that the ciphertext implicitly contains A. The data producer also runs this algorithm. Note that 

we use CP-ABE-Enc to encrypt the encryption key rather than the FHIR data, for efficiency 
reasons. 
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Note: access structure A will be defined by the data producer. 

ABE-KeyGen 

The key generation algorithm takes as input the master secret key and a set of user attributes 
DC_Att that describe the key. It outputs the data consumer’s private key K_ABE. The IAM 

runs this algorithm for each data consumer. 

CP-ABE-Dec 

The decryption algorithm takes as input the public parameters pp, a ciphertext 

CT_ABE, which contains an access structure A, and a data consumer private key K_ABE, 

which is a private key for the attribute set DC_Att. If the set DC_Att of attributes satisfies the 

access structure A, then the algorithm will decrypt the ciphertext and return K_AES as an 

output message. Using this output (i.e. this key), the data consumer can then decrypt the 
encrypted FHIR data (see algorithm below). The data consumer runs this algorithm. 

AES-Dec 

This algorithm takes the key K_AES and the ciphertext CT_AES as input. It then uses this key 

and the AES decryption algorithm to decrypt the CT_AES. The output of this algorithm is the 

FHIR data. The data consumer also runs this algorithm. 

 

Figure 15 - Ciphertext-policy ABAC scheme to access medical data 

Different steps within CP-ABAC: 

The steps of our proposed CP-ABAC scheme are described as follows. Note that steps 1 and 
4 are only used for initialization, steps 2 and 3 for data storage (by the data producer), and 
steps 5 and 6 for data retrieval (by the data consumer). 

Step 1 

The IAM takes the security parameter and the attribute space and runs the Setup algorithm. 
The Setup algorithm returns the master secret key and public parameters pp of the system. 

At this point, IAM stores the master secret key and publishes the public parameters pp. 

Step 2 

Once the data producer (DP) generates the FHIR data, it picks the random key K_AES. And 

runs the AES-Enc algorithm to encrypt the FHIR data. The output of this algorithm is the 
ciphertext CT_AES.  

Step 3 

At this point, the DP defines the access structure A over the universe of attributes and runs 

the CP-ABE-Enc to encrypt the key K_AES. The output of this algorithm is the ciphertext 
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CT_ABE. After running this algorithm, the DP determines the access rights to the encrypted 

message in access sets and grants access to the ciphertext only to a specific group of DCs. 
Finally, DP uploads the tuple <CT_AES , CT_ABE > to the DGW. From this stage onwards, the 

rest of the encryption and access control works exactly as before (see D-ABAC solution). 

Step 4 

During initialization, each data consumer (DC) needs to get the secret key corresponding to 
its attributes. Therefore, it will query the IAM. The IAM then runs the ABE-KeyGen algorithm 
and produces the secret decryption key K_ABE under the attribute set of the data consumer 

DC_Att. Finally, the IAM sends the secret decryption key K_ABE to DC. It is worth 

mentioning that this step of the scheme can be performed offline and once.  

Step 5 

When the data consumer (DC) with a valid attribute set wants to access the FHIR data, it will 
communicate to the DGW and the access control framework, similarly as in the D-ABAC 
solution. When access was granted, the DGW will provide the DC with the tuple <CT_AES , 

CT_ABE >. Using its secret key K_ABE, the data consumer (DC) performs the CP-ABE-Dec 

algorithm on CT_ABE. If the collection of DC attributes satisfies the access structure A 

associated with the ciphertext, then the algorithm outputs a decrypted message K_AES, else, 

decryption fails. 

Step 6 

The final decryption algorithm AES-Dec uses the key K_AES, retrieved in step 5, to securely 

decrypt FHIR data. This step is also performed by the data consumer. 

 

Key Revocation: 

Since the data producer (DP) encrypts the data based on a chosen access structure and does 
not obtain the data consumer (DC)'s certificate online, the DP is not able to check if the DC is 
revoked. The most popular solution in ABE-based access control systems is to re-encrypt the 
data based on the new access structure or to update the key. However, this type of method 
has several shortcomings. Several different DCs might match the decryption policy. Updating 
the key may therefore force the IAM to maintain a large amount of private key storage, i.e. a 
key for every time period. Therefore, to provide the revocation functionality we propose 
another attribute-based scheme called cryptographic attribute-based access control (C-
ABAC), which we will discuss below.  

 

III.1.4.  Cryptographic attribute-based access control (C-
ABAC) scheme 

In this subsection, we propose an alternative solution for the CP-ABAC scheme described 
above. As mentioned, CP-ABE schemes have the limitation that they only have limited support 
for dynamic key revocation. Therefore, to provide key revocation, we propose a novel scheme 
denoted as cryptographic attribute-based access control (C-ABAC). In this scheme, we rely 
on the IAM to decrypt the encryption key that was chosen by the data producer. Note that 
similarly to the CP-ABAC solution, also the C-ABAC scheme is a security extension of the 
current access control framework (so either the basic access control framework or the D-
ABAC solution). In the ProTego project, we opted to combine C-ABAC with D-ABAC. 

High-level overview of the C-ABAC architecture: 
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As shown in Figure 16, our proposed C-ABAC scheme relies on encrypting the K_AES using 

the public key pk of the IAM. Thus, the decryption of the K_AES is now carried out in the 

IAM. The algorithms and steps of the proposed CP-ABAC scheme are as follows.  

Algorithms: 

The scheme consists of six algorithms: Setup, AES-Enc, Public-key-Enc, IAM-PDP, Public-
key-Dec, and AES-Dec. 

Setup 

This algorithm generates the pair of a public key (pk) and a secret key based on the system 

security parameter. The IAM runs this algorithm, stores the secret key, and publishes pk. 

AES-Enc 

This algorithm picks the random key K_AES. It then uses this key and the AES encryption 

algorithm to encrypt the FHIR data. The output of this algorithm is the ciphertext CT_AES. The 

data producer runs this algorithm. 

Public-key-Enc 

This algorithm is the asymmetric encryption algorithm that takes as input the IAM public key 
pk, K_AES as the input message, and an access structure A over the universe of attributes 

(i.e. the security policy). The algorithm will encrypt K_AES and produce a ciphertext 

CT_pk=Epk(K_AES,A). The data producer also runs this algorithm. 

Note: access structure A will be defined by the data producer. 

Public-key-Dec 

The Public-key-Dec algorithm takes as input the master secret key and a message 
CT_pk=Epk(K_AES,A). It decrypts the message and obtains the tuple <K-AES,A>.  Then it 

forwards the tuple to the IAM Policy Decision Point (IAM-PDP) algorithm. The IAM runs this 
algorithm. 

IAM-PDP 

The IAM-PDP algorithm takes as input the tuple <K-AES,A> and outputs the private key 

K_AES to the data consumer iff the data consumer’s attributes satisfy the access structure 

A. If these security policies are met, K_AES is given to the data consumer. The IAM also runs 

this algorithm. 

AES-Dec 

This algorithm takes the key K_AES and the ciphertext CT_AES as input. It then uses this key 

and the AES decryption algorithm to decrypt the CT_AES. The output of this algorithm is the 

FHIR data. The data consumer runs this algorithm. 
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Figure 16 - Cryptographic ABAC scheme to access medical data 

 

Different steps within C-ABAC: 

The steps of our proposed C-ABAC scheme are described as follows. Note that step 1 is only 
used for initialization steps 2 and 3 for data storage (by the data producer), and steps 4 to 6 
for data retrieval (by the data consumer). 

Step 1 

The IAM takes the security parameter and runs the Setup algorithm. The Setup algorithm 
returns the secret key and public key pk of the IAM. At this point, IAM stores the secret key 

and publishes the public key pk. 

Step 2 

Once the data producer (DP) generates the FHIR data, it selects a random key K_AES. and 

runs the AES-Enc algorithm to encrypt the FHIR data using this key. The output of this 
algorithm is the ciphertext CT_AES.  

Step 3 

At the time of sending data to the DGW, the DP defines the access structure A over the 

universe of attributes and runs the Public-key-Enc to encrypt both K_AES and A as 

CT_pk=Epk(K_AES,A). Finally, DP uploads the tuple <CT_AES , CT_pk> to the DGW. From 

this stage onwards, the rest of the data storage process is similar as in the D-ABAC solution. 

Step 4 

When the data consumer (DC) wants to access the FHIR data, it first communicates to the 
DGW and access control framework, similarly as in the D-ABAC solution. If access is granted, 
the DGW will send the tuple <CT_AES , CT_pk> to the DC. After receiving this tuple, the DC 

sends the ciphertext CT_pk to the IAM for decryption.  

Step 5 

Upon receiving the request, the IAM runs the Public-key-Dec algorithm to decrypt the message 
CT_pk=Epk(K_AES,A)using the IAM secret key. Then it forwards the tuple <K_AES,A> to its 

internal IAM Policy Decision Point (IAM-PDP) algorithm. At this point, the IAM-PDP algorithm 
outputs the private key K_AES to the data consumer iff the data consumer’s attributes satisfy 

the access structure A. Then, K_AES is given to the data consumer. 

Step 6 
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The DC uses the decryption algorithm AES-Dec, using the key K_AES, to securely decrypt 

the FHIR data. 

 

Key Revocation: 

The IAM runs the IAM-PDP algorithm for each transaction. Since the IAM-PDP algorithm 
checks at runtime the dynamic access structure A and validates the data consumer (DC)'s 

credentials online, the IAM will automatically detect when a DC is revoked, and will not provide 
a revoked data consumer the encryption key K_AES. In other words, the IAM performs an 

online revocation check on behalf of the data producer. 

 

III.1.5.  Access structure 

In both the CP-ABAC and C-ABAC constructions, the credentials of the data consumer will be 
represented by a set of descriptive attributes. An access structure will specify through an 
access tree structure (Bethencourt, 2007): a security policy that the data consumer’s attributes 
set must satisfy to decrypt. 

 

 

 

Figure 17 - Example of the access tree structure with four attributes located in the leaf nodes 

The threshold gate access tree is an access structure where interior nodes are threshold gates 
and the leaf nodes are the attributes. An access tree could represent a Boolean equation that 
contains AND and OR gates instead of threshold gates. Note that a Boolean equation access 
tree is a special case of a threshold gate access tree (e.g., the AND gate is a (2, 2)-threshold 
gate while the OR gate is a (1, 2)-threshold gate). A data consumer will be able to access data 
iff it has all the attributes in the nodes of the tree such that the access structure encoded in 
the tree is satisfied. For instance, the access policy demonstrated in Figure 17 can be described 
using the following Boolean equation: (doctor OR (patient 𝑨𝑵𝑫 (file producer OR file owner)).   

 

III.1.6.  Deployment of the enhanced access control 

schemes 

In this section, we explain how CP-ABAC or C-ABAC can be combined with the current access 
control framework (so either the basic access control framework or the D-ABAC solution). We 
also compare these two extensions in terms of efficiency and functionality.  
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CP-ABAC extension: Figure 18 shows the high-level overview of the CP-ABAC and D-ABAC 
combination. The scheme works as following steps. In the initialization phase of the system, 
the IAM runs Setup and ABE-KeyGen algorithms of the CP-ABAC scheme and sends the 
necessary data to the other entities in the system (for more details see CP-ABAC scheme).  
When the data producer wants to send the data to the DGW, it first authenticates itself to the 
external IAM and obtains an authorization token. The data producer then runs the CP-ABAC 
scheme (only AES-Enc and CP-ABE-Enc algorithms) and generates CT_ABE and CT_AES 

based on the access structure A. It then sends to the DGW the token together with tuple 

<CT_AES , CT_ABE > and input data (for more details see D-ABAC and CP-ABAC schemes). 

The DGW now encrypts this data and sends the key-encryption key (KEK) to the access 
control component. From this stage onwards, the rest of the data storage process is similar to 
the D-ABAC solution. 

 

Figure 18 - CP-ABAC extension on D-ABAC scheme 

When a data consumer wants to access the encrypted medical data first authenticates 
themselves to the external IAM and obtains an authorization token. Then, the data consumer 
sends the authorization token to the DGW. The DGW relays this token to the access control 
component for the access request similarly as in the D-ABAC solution. When access is 
granted, the DGW will provide the data consumer with the tuple <CT_AES , CT_ABE > (this 

decision is based on the OPA component with external security policies and input files). At 
this point, the data consumer uses the K_ABE and runs the CP-ABAC scheme (only CP-ABE-

Dec and AES-Dec algorithms). More precisely, If the set DC_Att of attributes satisfies the 

access structure A, then the CP-ABE-Dec algorithm will decrypt the ciphertext and return 

K_AES as an output message. Using K_AES and AES-Dec algorithm, the data consumer 

can then decrypt the encrypted FHIR data (for more details see CP-ABAC scheme).   

CP-ABAC extension: 

Figure 19 shows the high-level overview of the C-ABAC and D-ABAC combination. The 
scheme works as following steps. In the initialization phase of the system, the IAM runs the 
Setup algorithm of the C-ABAC scheme and sends its public key pk to the data producer (for 

more details see C-ABAC scheme).  When the data producer wants to send the data to the 
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DGW, it first authenticates itself to the external IAM and obtains an authorization token. The 
data producer then runs the C-ABAC scheme (only AES-Enc and Public-key-Enc algorithms) 
and generates CT_pk and CT_AES, where, CT_pk=Epk(K_AES,A). It then sends to the DGW 

the token together with tuple <CT_AES , CT_ABE > and input data (for more details see D-

ABAC and C-ABAC schemes). The DGW now encrypts this data and sends the key-encryption 
key (KEK) to the access control component. From this stage onwards, the rest of the data 
storage process is similar to the D-ABAC scheme. 

 

Figure 19 - C-ABAC extension on D-ABAC scheme 

When a data consumer wants to access the encrypted medical data first authenticates 
themselves to the external IAM and obtains an authorization token. Then, the data consumer 

sends the authorization token to the DGW. The DGW relays this token to the access control 
component for the access request similarly as in the D-ABAC solution. When access is 
granted, the DGW will provide the data consumer with the tuple <CT_AES , CT_pk > (this 

decision is based on the OPA component with external security policies and input files). At 
this point, the data consumer sends the CT_pk to the IAM. At this point, IAM runs the C-ABAC 

scheme (only Public-key-Dec algorithms) to obtain the tuple <K-AES,A>.  Then it runs the 

IAM-PDP algorithm of the C-ABAC scheme to retrieve the private key K_AES. Finally, IAM 

forwards this key to the data consumer iff the data consumer’s attributes satisfy the access 
structure A. Using K_AES and AES-Dec algorithm, the data consumer can then decrypt the 

encrypted FHIR data (for more details see C-ABAC solution).   

 

CP-ABAC extension vs. C-ABAC extension: 

As mentioned earlier, there are some strong points and shortcomings in both CP_ABAC and 
C_ABAC extensions. Table 1 compares the two extensions. It is important to note that both 
extensions are robust against an attack where the DGW and access control component 
collude, and are resistant against an attack where either the DGW or the access control 
components are compromised. 
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Table 1 - CP-ABAC extension vs. C-ABAC extension 

 

Scheme Strong points Shortcomings 

CP-ABAC - no need for extra computation on the 
IAM side (the IAM only runs the Setup 
phase that can be offline and once). 

- no need to add extra flow to the 
current scheme. 

- does not support key revocation. 

- computational costs compared to C-
ABAC on both data producer and data 
consumer sides (1 AES and 1 ABE 
encryption/decryption on both data 
producer data consumer sides). 

C_ABAC - efficient key revocation. 

- low computation costs on both data 
producer and data consumer sides (1 
AES and 1 public-key encryption on 
the data producer side and only 1 
AES decryption on the data consumer 
side).  

- needs extra computations in the IAM-
side (i.e., the IAM runs the Public-key-
Dec and IAM-PDP algorithms). 

- needs an extra flow between data 
consumer and IAM (higher 
communication cost compared to CP-
ABAC). 
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IV. MOBILE DEVICE SECURITY (UAH) 
During the first half of the ProTego project, we designed and developed the initial architecture 
for the ProTego Continuous Authentication (CA) model. This process was described in 
deliverable D5.2. During the second half of the project, this architecture was reviewed and 
extended. Also, during this part of the project, we completed different experiments to test the 
CA method for mobile devices resulting in the final modular CA system. The following 
subsections detail each of these.  

IV.1.1.  Overall achievements 

IV.1.2.  Continuous Authentication Integration  

The Continuous Authentication (CA) solution covers the integration with the hospitals involved 
in the project, Marina Salud (MS) and Ospedale San Rafaelle (OSR). Each hospital has its 
own architecture and proprietary systems. The Continuous Authentication solution is aware of 
these singularities and provides a generic solution, which can be used in multiple scenarios.  

Like the rest of the components of WP5, the CA module was Dockerized and prepared for the 
deployment in Kubernetes platforms, through the creation of Helm charts and also, for its 
deployment using Docker-compose.  

1. Kubernetes deployment. The CA module implements a new functionality that facilitates 
creating a custom configuration profile for each partner’s environment. One of the most 
significant challenges was the authentication of the partners’ users for all the 
architecture components. Now, it is possible to use the same unique identifier of the 
partner’s legacy system to associate user metrics and values. We redesigned the 
system to use several authorization providers so that it can rely on data from Amazon 
Cognito in the case of Marina Salud, and authorization tokens provided by OSR from 
Keycloak. The setup of the authorization provider can be made with a new initialization 
feature. 

2. To accommodate possible future improvements and to improve versatility, several 
Continuous Authentication AI models can be registered. Each can perform different 
assessments of the user’s behavior and produce different metrics. So, the decision 
system can be fed with more inputs to return more reliable authentication decisions 
(trust values). 

On the other hand, the Android Agent of the CA module was completed and improved. It acts 
as an Endpoint Detection and Response (EDR) client that runs on a mobile phone. Each 
hospital has different approaches, to develop its mobile apps: 

1. Marina Salud uses a mobile app called Pocket EHR developed on Flutter. 
2. For OSR’s Foodcoach mobile app, we developed a mobile app using Java/Kotlin and 

Android Web Views.   

As Flutter does not allow the use of Java/Kotlin code, we needed to find a common solution 
integrable with both systems. So, in order to support both mobile apps the EDR client can be 
called through broadcast receivers. This provides a single-entry point to allow different 
technologies to communicate with our application. Furthermore, if the hospital wants to use 
their own user database and credentials, they need to share each user’s identity, clients have 
to create a valid JWT token (i.e., signed with an authorization provider registered in the EDR 
backend) and then sent it through the broadcast receiver.  

intent = Intent().setClassName("eu.protego.ca.edr.android", 

"eu.protego.ca.edr.android.core.receiver.ProTegoJWTReceiver") 

intent.action = "android.intent.action.SEND" 
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Figure 20 – CA component launch using a broadcast receiver 

Finally, the trust values produced by the CA solution can be sent through a Kafka topic to the 
SIEM, which can trigger alerts. 

 

 

IV.1.3.  Final Architecture 

Figure 21 shows the design architecture of the system. The redesign aims to meet the 
following objectives: 

1. Separate the trust assessment from the CA decision-making system so that different 
types of clients can use the system. 

2. Separate the authorization from the main CA logic to facilitate using several 
authentication systems for different users (e.g. MS does not use the same 
authentication methods, and its users are different than OSR or other Hospitals). 

3. Enable the implementation of local CA systems but also combining their predictions in 
a holistic model. This facilitates the implementation of sensible models (from the point 
of view of data protection) in the mobile phone and combines their trust values with 
other (cloud) metrics to produce a global result. 

 

Figure 21 – Architecture diagram 

Figure 22 shows how the system retrieves user metrics (like keyboard measurements, 
navigation between applications, or touch patterns) and processes them (every 5 minutes) to 
generate user AI models. After that, it evaluates the new incoming user metrics using the AI 
model (every 30 seconds), producing a trust value for each one. All trust values are uploaded 
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to the CA decision system (named JBCA), which generates a final decision combining them.  
The EDR system queries the decision to maintain the session or lock the mobile device. The 
decision result is also sent to the SIEM and could be checked by the partners’ backends.  

A new AI model is generated when one of the following conditions is met: (1) there is no 
previous model, or (2) there is a previous model, and the trust value of the user’s identity is 
over 50%. So, the new model is not created using the metrics of an impostor.  

If an unauthorized user interacts with the mobile phone, the metrics new interaction will return 
a negative prediction of user identity, and the CA decision system will generate trust values 
under 50%, triggering the additional responses.  

 

 

Figure 22 - Sample flow diagram 
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IV.1.4.  Experiments with AI Models 

After a successful evaluation from the ethical committee of the project and the ethical 
committee of the University of Alcalá, we performed a set of experiments with a larger 
population. The COVID19 pandemic made data collection for the experiments difficult but 
meeting all the safety guidelines we got a sample of over 50 users. Experiments focused on 
the keystroke metrics for mobile phones by implementing an EDR agent to collect them. 
Participants in the experiment completed the following steps: 

1. Install a mockup CA EDR app and log in using an anonymous user created by the 
research team. 

2. Input a predefined text. All users type the same text. Participants were not given 
instructions to follow any particular pattern or style. For example, they could write using 
capital letters or not and or make particular choices concerning grammatical rules or 
conventions.  

3. Participate in a ten-minute conversation using their mobile phone, about a selected 
topic with another participant or a research team member.  

Data gathered from these experiments is used to build and compare decision models and 
decide which machine learning (ML) classifiers better fit the CA decision problem. 
Furthermore, to extend our experiments and data, we used a public dataset called HMOG (al., 
2016), transforming the data into the keystroke metrics supported by the EDR mobile agent. 
HMOG dataset records the interactions of 100 users during 24 sessions (8 reading sessions, 
8 writing sessions, and 8 map navigation sessions). It includes sensor information, touch, 
gestures, and keypresses on the virtual keyboard. The HMOG dataset recorded raw data for 
each keypress event, including the timestamp, type (down or up), and key code. For the 
ProTego research, the keypress event information of all eight writing sessions of the HMOG 
dataset was transformed using a Python script that computed the pressingTime, timeBetween-
Press, and timeReleaseNextPress based on the timestamps and type of keypresses reported 
in the dataset. These metrics were described in deliverable 5.2 and are used by the EDR 
mobile agent. Figure 23 presents these keystroke measurements graphically. The 
transformed HMOG dataset used in the ProTego research includes 712418 keypress events 
for the 100 users (range 4306-11917 events). 

 

Figure 23 - Keystroke events and measurements 

 

Initial experiments reported in deliverable 5.2 suggested that RFC (Random Forest Classifier) 
returned better results than other classifiers for the CA classification problem. Experiments 
performed in this last stage of research as part of WP5 showed that ensemble trees (RFC, 
GBC, and ETC) return similar results (Figure 24 shows a  box plot of metrics of classifiers for 
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the CA problem). We tested various ML classifiers, including ensemble trees, decision trees, 
instance-based, probabilistic, and neural models. 

 

Figure 24 - Box plot of metrics of ML classifiers for the CA problem 

Moreover, we run an analysis of variance (ANOVA) to compare the differences between the 
100 users of the HMOG dataset for each classifier statistically. Results show that the 
differences are significant across different metrics: accuracy (F=46.73, p<0.001), precision 
(F=43.29, p<0.001), recall (F=90.58, p<0.001), F1 (F=160.99, p<0.001), and AUC 
(F=65.26,p<0.001). Figure 25 shows the confidence intervals for the accuracy metric, showing 
the differences graphically. Overlapping intervals (for each pair of classifiers) mean that there 
are no differences. Non-overlapping means that there are statistical differences between the 
two methods. GBC outperforms all other classifiers statistically, although differences with 
other ensemble classifiers (RFC, ETC) are marginal. So, all ensemble trees can be used to 
produce reliable CA AI models. 
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Figure 25- Interval plot of Accuracy for all classifiers (95% confidence interval of the mean). 

 

To improve these results, we also tested the combination of several machine learning models 
through ensemble learning. Ensemble learning is the process by which multiple models, such 
as classifiers or experts, are generated and combined. However, ensemble learning did not 
improve the accuracy of prediction models substantially. Just a marginal 1% or 2% accuracy 
increase is obtained when combining the classifiers that returned the single best performance 
or a combination of classifiers that use different methods (e.g. ensemble tree + instance-based 
+ probabilistic). 

Results may suggest that the prediction is not very accurate since even for the best ML 
classifiers around 29% of the cases are incorrectly classified. However, with keystroke 
mechanics, every single event (i.e. key pressed) produces a prediction. So a few individual 
predictions can be combined to produce a more reliable result, thus mitigating the number of 
false positives and false negatives. The combination of multiple events and other possible 
sources of information can significantly improve the reliability of the CA system. The CA 
architecture of the ProTego project supports the integration of new sources of information 
coming from existing or new EDR agents. As part of the final stages of the project, we are 
working on fine-tuning the AI models to improve the results reported by the current scientific 
literature (al., 2016) (Frank, 2012) of mobile CA systems (around 5% increase for accuracy). 
We are collating the results of internal experiments to report them in scientific publications. 
Further trials at hospitals will also validate the findings.  

 

IV.1.5.  Privacy analysis 

Data protection is a priority for ProTego. Experimentation and the CA solution collect 
behavioral information that has to be adequately managed. As mentioned earlier, all 
experiments and data collection for the CA experiments were supervised and approved by the 
Ethical Committee of the project and of the University of Alcala. The process guarantees that 
data is gathered and stored securely and anonymously. However, even though all information 
is stored anonymously, we performed a privacy analysis of the behavioral information data 
from two different perspectives: 
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- Compliance: the experiments and system meet privacy and ethical standards. They 
are appropriately reported and approved. 

- Side channel attacks: a statistical analysis shows that even though data was 
anonymized, cryptoanalysis techniques could return information about user activity. 
Figure 26 shows a sample of how the touch events’ coordinates can be clustered (e.g., 
using k-means algorithm), so they can be used to unveil the text typed. The research 
team at the University of Alcalá is conducting further research to implement enhanced 
privacy for the ProTego CA module, which could also be applied to any system that 
collects data related to user interaction with mobile devices. 

 

Figure 26 - Clustering sample (where X and Y are screen coordinates) 
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V. NETWORK SLICING ISOLATION 
During the first half of the ProTego project, T5.4 efforts focused on providing network slicing 
isolation to the communication infrastructure. In this section we will present the final solution. 
We will first review the main network slicing ideas and later on, we will discuss the 
implementation details and additional features considered for the tool. 

 

 

V.1.1.  Description of the solution 

The ProTego network slicing tool is an extra element of the ProTego toolkit to increase security 
at network level within the hospital network infrastructure. This allows to virtualize in logical 
topologies the available physical network elements. In ProTego, the Network slicing solution 
has two main functions: performance isolation and privacy isolation: 

 

• Performance Isolation: one of the most important functions in network slicing is to 
provide data channel capacity allocation in a deterministic manner. This means that 
flows will have a certain agreed QoS independently of the network state (e.g. traffic 
congestion). Network slices are created on top of the physical infrastructure and 
virtualize the access to the network resources for the different flows. This way, 
resources will be used by each network slice in a predefined manner, managing 
priorities and schedules to achieve the targeted QoS. In the context of ProTego, 
secured flows need to have a guaranteed QoS (measured by e.g. bandwidth, latency 
and packet loss) to perform the required security processes. The network slice will 
provide such a per-flow isolated communication channel ensuring that each use case 
has its own required QoS. 

• Privacy Isolation: the second function ensures that physical wired network can be 
mapped in secured, isolated logical topologies. Besides adding security and data 
channel confidentiality to each slice, the privacy isolation function logically separates 
each flow from each other, allowing per-flow topology management and per-flow 
encryption. 

By applying network slicing, the ProTego network can provide strict performance policies, 
achieving two main goals: protection against Denial of Service attacks (by having isolated 
slices in terms of performance, the damage of a Denial of Service attack in one slice is limited 
to that slice, without impacting other existing network slices) and guaranteed performance for 
mission critical data flows (e.g. a slice for critical medical data can be configured with the 
necessary resources to guarantee enough bandwidth and low latency, and not be affected by 
other traffic with lower priority such as access revocation messages or SIEM flows). 

The ProTego network slicing architecture is depicted in Figure 27 - Proposed Network Slicing 
architecture for ProTego. The first layer processes input from external actors, such as Mobile 
Network Operators or the private hospital network operator. This input is transferred through 
a predefined Northbound interface that configures well-known standard network slicing 
parameters (bandwidth, latency, packet loss, etc), or through a standard network slice type 
file, as specified by GSMA [GSMA]. These commands (or type files) are processed by the 
Slice Processor, which translates high-level network slice parameters to network specific 
configuration (e.g. airtime in the radio interfaces or topologies in the wired network). The Slice 
processor generates these performance and privacy rules, sending them to the Performance 
Isolation Engine and the Privacy Isolation Engine. The engines are then able to map the 
requirements to API calls to the virtualized resources, i.e. Software Defined Radio (SDR) 
controllers, SDN controllers, and the Secure Interface Setup. The SDR controller is 
responsible for configuring the radio parameters and prioritization queues in each Access 
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Point (AP) to reach the necessary performance for the specified service. The SDN controller 
will configure the SDN-enabled network (in terms of topology and intents) to steer the traffic 
securely and without performance degradation inside the hospital infrastructure. The Secure 
Interface Setup will configure the secure network interfaces with standard encryption 
techniques (e.g. AES-256-CBC + pub/priv keying) to enable the confidentiality control of the 
sensitive data. These secure network interfaces will be available for the SDN switches to 
control the critical service flow through them and, therefore, perform an extra and customizable 
security layer for hospital services. 

 

 
 

 

Figure 27 - Proposed Network Slicing architecture for ProTego. 

The implementation of the ProTego Network slicing tool is done on the basis of two use cases: 
traffic differentiation within hospital data traffic, and traffic differentiation between devices from 
outside the hospital and devices from the hospital infrastructure: 

 

• Traffic differentiation inside the hospital infrastructure. Network slicing can be used to 
potentially create multiple network slices on the hospital premises, each of the slices 
would have its own set of properties and requirements. This depends on the particular 
use case. The objective of creating network slices on the hospital premises is to take 
advantage of the two main functions of network slicing (performance and privacy 
isolation). There are two main categories of data to be protected in communication: 

o Critical medical data - Such as from/to surgery room devices, doctors, etc. 

o Critical security data - Such as data to SIEM, etc. 

• Of course, each of those categories can have one or more network slices built for them. 
For example, for medical data flows, there can be two network slices, one for patients 
and one for the doctors. The doctors network slice would also take advantage of the 
data channel bandwidth guarantee, meaning the network slice used by doctors would 
have more resources allocated to it than the one used by patients. This ensures that 
critical medical data is available to doctors even in situations when the network is 
congested. 
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• Between devices outside the hospital infrastructure and devices in the hospital 
infrastructure. In this use case, network slicing can protect the critical medical data 
communication. On one hand, devices that are inside the hospital infrastructure can 
have a secure and guaranteed way of connecting to the network (this can be used by 
doctors or patients in the hospital). On the other hand, devices from outside the 
hospital (e.g., visitors), will have a limited and constrained access to the network. Using 
the main functions of network slicing, we can guarantee bandwidth to certain critical 
network slices, as well as have additional security in terms of network slice isolation. 

 

V.1.2.  Implementation of the solution 

The proposed network slicing solution for ProTego is based on the 5G-EmPOWER framework 
1, a state-of-the-art framework to perform network slicing on cellular and WiFi networks. Since 
most common and cost-effective networks deployed nowadays in hospitals are WLAN/LAN 
networks, we focus our solution for WiFi networks. 

 
 

Figure 28 Network Slicing layered architecture performed in ProTego. 

 

Figure 28 shows our network slice enabled layered architecture. A tenant (e.g. the hospital) 
can use their infrastructure to offer specific Service Level Agreement (SLA) to each 
user/service group. These SLAs are translated into QoS requirements to be provided by the 
network, e.g. minimum throughput, maximum allowed latency, etc. 

The network slicing in a hospital environment will be managed by the hospital’s network 
operator and slices can be divided per service or per device. Services in a hospital have 
different priorities, for instance, a nutrition application (low priority), and a hearth-beat 
monitoring application (high priority). Also, some devices may need to experience different 
performance, for example, a doctor’s laptop can be assigned with more throughput than a 
patient’s smartphone. Therefore, the network slicing will use the available tools to prioritize 
and schedule the traffic of one service/device over another service/device with lower priority.  

 

1 [Empower] 5G-EmPower web site. Smart Networks and Services (SENSE) Research Unit at 

FBK. [Online]. Available: https://5g-empower.io/ (2021, June) 

https://5g-empower.io/
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5G-EmPOWER allows for SDN control and radio resource management on Wi-Fi networks 
which enables slicing techniques [Empower]. 5G-EmPOWER is composed of two main 
components: the EmPOWER controller and the Wireless Termination Points (WTPs). The 
EmPOWER controller is the component responsible for the management of the Radio Access 
Network (RAN) by deploying the necessary configuration in the WTP, which will prioritize and 
schedule the network traffic by modifying per-flow the most common parameters in the IEEE 
802.11 standard family (e.g. DIFS, SIFS, etc.). Unless IEEE 802.11e which provides QoS 
differentiation over four traffic classes, EmPOWER permits a more deterministic differentiation 
of the radio resources. The WTPs are deployed in the Wi-Fi access points where the clients 
connect, and the network slice is monitored and managed.  

In order to perform the wireless network slicing, 5G-EmPOWER utilizes virtualization 
techniques (logical links can be built over one or more physical links) and specific hardware 
(ath9k Wi-Fi cards) to add programmability to the Wi-Fi access points and provide different, 
fine-grained QoS for each of the connected users. The QoS is centrally managed by 
dynamically creating priority queues and steering the data packets to the queue that matches 
the necessary performance level. 

In order to identify the service traffic, 5G-EmPOWER uses OpenVSwitch (OVS) to tag network 
packets which will enable the Wi-Fi scheduler to apply the right prioritization rule for that traffic 
flow. OVS is a OpenFlow-enabled virtual switch that enables traffic steering and network 
isolation using OpenFlow rules.  

 

Figure 29 Sequence diagram of the traffic rule creation process. 

 

 

Thanks to the programmable behavior of OVS, the 5G-EmPOWER controller can control the 
network slicing at the different APs and allows the STAs to handover seamlessly from one AP 
to another. Figure 29 illustrates the sequence of communication from the 5GEmPower 
controller to the OVS. For privacy isolation, the OVS is also used to steer the traffic among 
different network interfaces that can tunnel the network traffic, apply encryption techniques or 
just send raw data to the network.  
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Figure 30 - Slicing enablers for ProTego. 

 

 

The proposed 5G-EmPOWER based network slicing solution is illustrated in Figure 30. It 
presents the control and data channels of the different service flows we foresee in a hospital 
network environment. In the envisioned scenario, the wireless clients connect to the Wi-Fi APs 
with the 5G-EmPOWER WTP enabled. These clients perceive only one Wi-Fi Service Set 
IDentifier (SSID) since the APs are virtualized. This way, the 5G-EmPOWER controller can 
directly control the APs as WTPs, commanding them what to do with each packet. This way, 
packets can be filtered accordingly to select which WTP is effectively carrying the traffic. 
Additionally, that WTP will manipulate accordingly their Wi-Fi priority queues and airtime 
metrics to assign the required wireless slice to each client. This process is illustrated in Figure 
Figure 31, where the queue structure is presented along with the data traffic flow within a Wi-
Fi access point. 
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Figure 31 – Slice queue structure and data traffic flow in a Wi-Fi access point. 

 

In the wired segment, traffic is forwarded by an Openflow enabled switched network (e.g., with 
OVS) to the corresponding VXLAN (running each an IPSec instance). Traffic in this switch 
network is controlled by the Backhaul controller. VXLAN creation and configuration is done by 
the Secure Interface Setup which is in charge of deploying the different virtual local networks 
over the hospital internal network. The control plane (5G-EmPOWER controller, backhaul 
controller and the Secure Interface Setup) can be deployed in different containers, so that 
different control services are isolated one from another and may be dynamically dimensioned 
according to the demand. We refer to D7.2 for preliminary results of this tool in a controlled 
small-scale testbed and to D7.3 for integration results in a real hospital network. 

V.1.3.  Network Slicing Tool integration 

 

In addition to the stand-alone network slicing solution described above we have considered 

specific add-ons for the network slicing tool to further improve the risk mitigation: 

 

• Logging system integrated with SIEM: the 5G-EmPOWER will rely now on SIEM to 
record logs coming from the network slicing tool. In D5.2 (public) we proposed and 
developed a blockchain-based plug-in prototype for the tool to securely record 
changes in the network slice configuration (e.g., when a certain slice is created, or a 
policy is updated). However, our approach was not cost-effective and had some 
limitations: required redundant resources to setup the blockchain or rely in an external 
blockchain, slow transaction time, etc. Since ProTego already has a SIEM as a logging 
system to detect potential vulnerabilities, we opted to replace the blockchain-based 
plug-in with one based on the SIEM. This way, not only the changes in the 
configuration of the network slices will be recorded in the SIEM (and analyzed to detect 
potential vulnerabilities) but also the other logging messages from the network slicing 
tool will be reported, such as the detection of anomalous traffic or detection of 
malicious scans in the WLANs controller by the tool. In order to achieve this, the 5G-
EmPOWER controller is now integrated with the SIEM system (i.e. communicates with 
the Kafka server) to report both business-as-usual logs and network-triggered alerts. 

• Token-based  network slicing authentication: the current network slicing prototype has 
the limitation of using information contained in the data packets to classify and assign 
the traffic to each slice. This is mainly the MAC address and the DSCP/ToS code 
existing in the data packets. This creates the problem that attackers can spoof  such 
fields to impersonate other devices and services, interfering in the pre-defined network 
isolation setup defined by the network operator. While the functions of the network 
slicing will still apply (e.g. the performance isolation will still avoid DoS attacks to 
propagate from one slice to another), it would be convenient to provide an 
authentication system to the network slicing tool. We foresee that the most efficient 
way to perform this is to implement a two-way authentication system that first registers 
the device in the system (i.e., checks that the devices have the right to use the network 
and assigns them an authentication credential) and second makes the devices use a 
token derived from the obtained credentials in every packet to let the network slicing 
solution check the authenticity of the packet (MAC and DSCP/ToS are legit).  
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VI. SUMMARY 
Work package 5 has provided ProTego and the scientific community in general, with 
innovations to protect data.  While healthcare and the hospital environment were chosen as 
our main focus, these innovations can be applied a wide range of other use cases. 
 
Work package 5 was instrumental in the development and acceptance of the Apache Spark 
Parquet Modular Encryption standard and help spearhead the development of the official code 
release. Additionally, advanced data protection topics in this work package are contributing to 
IBM’s Open Source development of “The Mesh for Data”. 
 
The research in work package 5 advances the state-of-the-art in access control for e-health 
systems and provides a practical solution that offers a good trade-off between efficiency, 
flexibility and security. The CP-ABAC scheme offers security against a compromised access 
control and key management system, while still allowing to enforce fine-grained access control 
policies during read requests on sensitive medical data. Moreover, an alternative solution (C-
ABAC) has been studied as well to support the revocation of users’ attributes in addition to 
the security properties already offered by C-ABAC. Both schemes offer high security 
guarantees and are suitable to be applied in the use cases of the ProTego project.  
 
The CA module contributes to the ProTego project mobile device security through a scalable 
architecture to continuously authenticate users based on their interactions with their mobile 
phones. Research contributes to the state of the art with an increase in the accuracy and other 
target metrics using keystroke mechanics with the soft keyboards of mobile devices. Further, 
the architecture supports the addition of new EDR agents that can provide additional data to 
feed AI user models and also report their own trust values, which are combined to produce a 
single value of user trust. To the best of our knowledge this is the first integrated mobile CA 
EDR solution based on a flexible dynamic AI models, user trust values and an identity 
threshold. 
 
Additionally, the network slicing component contributes to ProTego by enabling network 
isolation in the hospitals’ internal networks. The research done proposes to use state-of-the-
art airtime-based network slicing to provide 5G-like performance isolation for mission critical 
applications in the hospitals. This is done by “softwarizing” the IEEE 802.11 networks and 
centralizing its control to offer to each network slice a guaranteed performance. We also 
contribute by integrating the proposed solution with existing security tools to offer additional 
privacy isolation to each network slice.  
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